ÑÅËÜÑÊÎÕÎÇßÉÑÒÂÅÍÍÀß ÁÈÎËÎÃÈß, 2015, òîì 50, ¹ 1, ñ. 3-15 Îáçîðû, ïðîáëåìû, èòîãè ÓÄÊ 633/635:581.4:579.64 doi: 10.15389/agrobiology.2015.1.3rus ÁÀÊÒÅÐÈÀËÜÍÛÅ ÌÈÊÐÎÎÐÃÀÍÈÇÌÛ, ÀÑÑÎÖÈÈÐÎÂÀÍÍÛÅ Ñ ÒÊÀÍßÌÈ ÐÀÑÒÅÍÈÉ Â ÊÓËÜÒÓÐÅ in vitro: ÈÄÅÍÒÈÔÈÊÀÖÈß È ÂÎÇÌÎÆÍÀß ÐÎËÜ (îáçîð) Ñ.Å. ÄÓÍÀÅÂÀ1, Þ.Ñ. ÎÑËÅÄÊÈÍ2 Ýôôåêòèâíàÿ ñòåðèëèçàöèÿ ðàñòèòåëüíûõ ýêñïëàíòîâ è ñîáëþäåíèå ïðàâèë àíòèñåïòèêè íå èñêëþ÷àþò ïðèñóòñòâèÿ â in vitro êóëüòóðàõ òàê íàçûâàåìûõ ñêðûòûõ (ýíäîôèòíûõ) áàêòåðèé. Ðîëü ýòèõ áàêòåðèé â êóëüòóðàõ òêàíåé ìàëî èçó÷åíà, îäíàêî åå, íàïðèìåð, ñâÿçûâàþò ñ ðåãåíåðàöèîííîé ñïîñîáíîñòüþ ýêñïëàíòîâ è âîçìîæíîñòüþ òðàíñôîðìèðîâàòü êóëüòèâèðóåìûå in vitro êëåòêè æèâîòíûõ è ÷åëîâåêà. Áàêòåðèàëüíûå øòàììû, ïàòîãåííûå äëÿ ÷åëîâåêà, ìîãóò óñòîé÷èâî ñîõðàíÿòüñÿ â ïàññèðóåìûõ êóëüòóðàõ è â ðàñòåíèÿõ ex vitro. Ðàñøèðåíèå ñðåäû îáèòàíèÿ áàêòåðèé ñîçäàåò ýêîëîãè÷åñêèå è ãåíåòè÷åñêèå ðèñêè, êîòîðûå îïðåäåëÿþò íåîáõîäèìîñòü òùàòåëüíîãî ìîíèòîðèíãà ýíäîôèòíûõ ñîîáùåñòâ â ðàñòåíèÿõ, óïîòðåáëÿåìûõ â ïèùó â ñûðîì âèäå, à òàêæå ïðè ïðèìåíåíèè in vitro òåõíîëîãèé â ïðàêòè÷åñêîì ðàñòåíèåâîäñòâå è äëÿ ïîëó÷åíèÿ ïðîäóêòîâ ïèòàíèÿ. Èäåíòèôèêàöèÿ áàêòåðèàëüíûõ ìèêðîîðãàíèçìîâ, êîëîíèçèðóþùèõ in vitro êóëüòóðû ðàñòåíèé, äàåò âîçìîæíîñòü èçó÷àòü âëèÿíèå áàêòåðèé íà õîçÿèíà, ïðîâîäèòü íàïðàâëåííóþ õèìèîòåðàïèþ, ñîçäàâàòü áàíê äàííûõ ìèêðîîðãàíèçìîâ, àññîöèèðîâàííûõ ñ êóëüòóðîé ðàñòèòåëüíûõ òêàíåé. Íàèáîëåå ðàñïðîñòðàíåíû äâà ìåòîäà èäåíòèôèêàöèè — òðàäèöèîííûé, áîëåå äîñòóïíûé, íî íå ïîçâîëÿþùèé âûÿâëÿòü íåêóëüòèâèðóåìûå ôîðìû (îí îñíîâàí íà èñïîëüçîâàíèè êóëüòóðàëüíûõ è ìîðôîëîãè÷åñêèõ õàðàêòåðèñòèê, à òàêæå õèìè÷åñêèõ è áèîõèìè÷åñêèõ ðåàêöèé), è ìîëåêóëÿðíî-ãåíåòè÷åñêèé.  ïîñëåäíåì ñëó÷àå ñ èñïîëüçîâàíèåì ìåòàãåíîìíîé ÄÍÊ è ñîîòâåòñòâóþùèõ ñïåöèôè÷åñêèõ ïðàéìåðîâ îïðåäåëÿþò ðàçëè÷íûå ïîñëåäîâàòåëüíîñòè 16S-ðÐÍÊ, èìåþùèå êàê êîíñåðâàòèâíûå ñàéòû, îäèíàêîâûå ó âñåõ ïðîêàðèîòîâ, òàê è ïðèãîäíûå äëÿ èäåíòèôèêàöèè âèäîñïåöèôè÷íûå ó÷àñòêè. Âíóòðåííèå òðàíñêðèáèðóåìûå ñïåéñåðû (internal transcribed spacers — ITS) ïðåèìóùåñòâåííî ïðèìåíÿþò äëÿ ðàçëè÷åíèÿ ìèêðîîðãàíèçìîâ íà óðîâíå âèäîâ è äàæå øòàììîâ. Òàêñîíîìè÷åñêèé ñîñòàâ áàêòåðèàëüíûõ ýíäîôèòîâ ñâèäåòåëüñòâóåò îá èõ ðàçíîîáðàçèè è îòñóòñòâèè ñïåöèôè÷åñêîãî íàáîðà â in vitro êóëüòóðàõ ðàñòåíèé ðàçíîé ñèñòåìàòè÷åñêîé ïðèíàäëåæíîñòè è â ýêñïëàíòàõ, îòíîñÿùèõñÿ ê ðàçíûì îðãàíàì ðàñòåíèÿ. Ñðåäè èäåíòèôèöèðîâàííûõ ýíäîôèòíûõ áàêòåðèé âûÿâëåíû ïîòåíöèàëüíî ïîëåçíûå äëÿ èíòàêòíûõ ðàñòåíèé, â ÷àñòíîñòè Streptomycete, Pantoea agglomerans è äð., à òàêæå ïàòîãåííûå äëÿ ÷åëîâåêà, íàïðèìåð Ralstonia mannitolytica, Staphylococcus epidermidis, Corynebacterium amycolatum, Bacillus neonatiensis, Salmonella è Nocaridia spp. Ïðè in vitro êóëüòèâèðîâàíèè ðàñòèòåëüíûõ îáúåêòîâ äëèòåëüíîå áåññèìïòîìíîå ïðèñóòñòâèå áàêòåðèé îáóñëîâëåíî, ñ îäíîé ñòîðîíû, ïîäàâëåíèåì èõ ðîñòà ôàêòîðàìè, ñîïðîâîæäàþùèìè êóëüòèâèðîâàíèå ðàñòèòåëüíûõ ýêñïëàíòîâ (pH, òåìïåðàòóðà íèæå îïòèìóìà äëÿ ðîñòà áàêòåðèé, àêòèâèðîâàíèå çàùèòíûõ ìåõàíèçìîâ), ñ äðóãîé — îäíîâðåìåííûì ïîääåðæàíèåì æèçíåäåÿòåëüíîñòè áàêòåðèé çà ñ÷åò ýêññóäàòîâ, âûäåëÿåìûõ ðàñòèòåëüíûì ýêñïëàíòîì. Áûñòðàÿ ïðîëèôåðàöèÿ áàêòåðèàëüíûõ êëåòîê ìîæåò íàñòóïèòü äàæå ïðè íåáîëüøèõ èçìåíåíèÿõ ïåðâîíà÷àëüíûõ óñëîâèé, ïðè óâåëè÷åíèè êîíöåíòðàöèè ðàñòèòåëüíûõ ýêññóäàòîâ è âñëåäñòâèå ñîáñòâåííî in vitro êóëüòèâèðîâàíèÿ êàê ñòðåññà â îòñóòñòâèå ðåãóëèðóþùåé ðîëè öåëîãî îðãàíèçìà. Ïî ìåðå óâåëè÷åíèÿ ÷èñëà ïàññàæåé äîëÿ ðàñòèòåëüíûõ êóëüòóð ñî ñêðûòîé áàêòåðèàëüíîé êîíòàìèíàöèåé âîçðàñòàåò. Èìåþòñÿ äàííûå, ÷òî ïðè ýòîì íåêóëüòèâèðóåìûå ýíäîôèòû ìîãóò ïðèîáðåòàòü ñòàòóñ êóëüòèâèðóåìûõ. Ñêðûòûå áàêòåðèàëüíûå êîíòàìèíàöèè ñïîñîáíû óãíåòàòü ðåãåíåðàöèþ, ìèêðîêëîíàëüíîå ðàçìíîæåíèå, âûçûâàòü ãèáåëü êóëüòèâèðóåìûõ in vitro ðàñòèòåëüíûõ îáúåêòîâ, ñëóæèòü ïðåïÿòñòâèåì äëÿ âîñïðîèçâîäèìîñòè ïðîòîêîëîâ è èìåòü îòíîøåíèå ê ïîÿâëåíèþ ýïèãåíåòè÷åñêèõ ñîìàêëîíàëüíûõ âàðèàíòîâ. Òàê, ôèëüòðàòû èçîëÿòîâ Acinetobacter è Lactobacillus plantarum, âûäåëåííûõ èç äåãðàäèðóþùèõ êàëëóñîâ, ïðè èíîêóëÿöèè â ýêñïëàíòû èëè äîáàâëåíèè â ïèòàòåëüíóþ ñðåäó ðåçêî ñíèæàëè ðåãåíåðàöèþ ïîáåãîâ, à áàêòåðèè Mycobacterium obuense è M. aichiense óãíåòàëè ðàçâèòèå ñåìÿí â êóëüòóðå in vitro. Àêöåíòèðóåòñÿ ïðîáëåìà ïîëó÷åíèÿ ãíîòîáèîòè÷åñêèõ ðàñòèòåëüíûõ êóëüòóð (â ÷àñòíîñòè, â in vitro êîëëåêöèÿõ ãåíåòè÷åñêèõ áàíêîâ ðàñòåíèé), îáóñëîâëåííàÿ ñëîæíîñòüþ âûÿâëåíèÿ è ýëèìèíàöèè áàêòåðèàëüíûõ ìèêðîîðãàíèçìîâ. Êëþ÷åâûå ñëîâà: êóëüòóðà òêàíåé ðàñòåíèé, áàêòåðèàëüíûå ìèêðîîðãàíèçìû, àíòèáàêòåðèàëüíàÿ òåðàïèÿ. Ïðè ðàáîòå ñ êóëüòóðîé ðàñòèòåëüíûõ òêàíåé in vitro íàëè÷èå áàêòåðèàëüíîé êîíòàìèíàöèÿ â çíà÷èòåëüíîé ñòåïåíè îïðåäåëÿåòñÿ êà÷åñòâîì 3 ñòåðèëüíîñòè (1, 2). Îäíàêî ýôôåêòèâíàÿ ñòåðèëèçàöèÿ ðàñòèòåëüíûõ ýêñïëàíòîâ è ñîáëþäåíèå ïðàâèë àíòèñåïòèêè íå èñêëþ÷àþò ïðèñóòñòâèÿ â êóëüòóðàõ in vitro ñêðûòûõ áàêòåðèé (áåç âèçóàëüíî íàáëþäàåìîãî ðîñòà è ñïåöèôè÷åñêèõ ñèìïòîìîâ) (3-5). Áàêòåðèàëüíûå ìèêðîîðãàíèçìû, åñòåñòâåííûì ìåñòîì îáèòàíèÿ êîòîðûõ ñëóæèò âîçäóøíàÿ ñðåäà, ïî÷âà, ðàñòåíèÿ è ÷åëîâåê, äåòåêòèðóþò è èäåíòèôèöèðóþò ñ ïîìîùüþ ìèêðîáèîëîãè÷åñêèõ, ìîëåêóëÿðíî-ãåíåòè÷åñêèõ è áèîõèìè÷åñêèõ ìåòîäîâ êàê â äëèòåëüíî ïàññèðóåìûõ, òàê è â èíèöèèðóåìûõ in vitro ðàñòèòåëüíûõ êóëüòóðàõ (6-14). Ñêðûòûå áàêòåðèàëüíûå èíôåêöèè, îáîçíà÷àåìûå ìíîãèìè èññëåäîâàòåëÿìè êàê âíóòðåííèå, èëè ýíäîôèòíûå, âûÿâëÿþò â êóëüòèâèðóåìûõ in vitro êàëëóñàõ, ìèêðîðàñòåíèÿõ, à òàêæå â ðàçëè÷íûõ òèïàõ ýêñïëàíòîâ — â âåðõóøêàõ ïîáåãîâ, ïî÷êàõ, ìåðèñòåìàõ (15-22). Áàêòåðèàëüíûå ýíäîôèòû, êîòîðûå âûïîëíÿþò ðÿä ôóíêöèé, âàæíûõ äëÿ ðàñòåíèé, áûëè è îñòàþòñÿ ïðåäìåòîì ìíîãî÷èñëåííûõ èññëåäîâàíèé (23).  òî æå âðåìÿ ðîëü ýíäîôèòíûõ áàêòåðèé â êóëüòóðàõ òêàíåé ìåíåå èçó÷åíà, îäíàêî îíà ïðåäñòàâëÿåò èíòåðåñ êàê â ôóíäàìåíòàëüíîì, òàê è â ïðèêëàäíîì àñïåêòå.  ÷àñòíîñòè, áàêòåðèàëüíûå ýíäîôèòû ðàññìàòðèâàþòñÿ â êà÷åñòâå êëþ÷åâîãî ôàêòîðà, îïðåäåëÿþùåãî ðåãåíåðàöèîííóþ ñïîñîáíîñòü ýêñïëàíòîâ íàðÿäó ñ ãåíîòèïîì è óñëîâèÿìè êóëüòèâèðîâàíèÿ (18). Èõ èçó÷àþò êàê âîçìîæíûé ïåðñïåêòèâíûé èñòî÷íèê íîâûõ êîìïîíåíòîâ äëÿ èñïîëüçîâàíèÿ â ïðàêòè÷åñêîé ìèêðîáèîëîãèè è ìåäèöèíå (24). Âíèìàíèå ê áàêòåðèàëüíûì ýíäîôèòàì îáóñëîâëåíî òàêæå íàêîïëåíèåì äàííûõ, óêàçûâàþùèõ íà óñëîâíîñòü èñòîðè÷åñêè ñëîæèâøåãîñÿ ðàçäåëåíèÿ ìèêðîîðãàíèçìîâ íà ôèòîïàòîãåííûå, ïàòîãåííûå äëÿ æèâîòíûõ (÷åëîâåêà) è íåïàòîãåííûå (25). Ïîêàçàíî, ÷òî ïàòîãåííûå áàêòåðèàëüíûå øòàììû ÷åëîâåêà ìîãóò óñòîé÷èâî ñîõðàíÿòüñÿ â ïàññèðóåìûõ êóëüòóðàõ è â ðàñòåíèÿõ ex vitro (14), à áàêòåðèè Agrobacterium tumefaciens ñïîñîáíû òðàíñôîðìèðîâàòü êóëüòèâèðóåìûå in vitro êëåòêè ÷åëîâåêà (26) è ýìáðèîíû ìîðñêèõ åæåé (27). Ðàñøèðåíèå ñðåäû îáèòàíèÿ áàêòåðèé ñîçäàåò ýêîëîãè÷åñêèå è ãåíåòè÷åñêèå ðèñêè, êîòîðûå îïðåäåëÿþò íåîáõîäèìîñòü òùàòåëüíîãî ìîíèòîðèíãà ýíäîôèòíûõ ñîîáùåñòâ, îñîáåííî â òåõ ðàñòåíèÿõ, êîòîðûå ÷åëîâåê óïîòðåáëÿåò â ïèùó â ñûðîì âèäå (14, 28). Ýòà ïðîáëåìà àêòóàëüíà è äëÿ êóëüòóðû òêàíåé ðàñòåíèé, ïîñêîëüêó in vitro òåõíîëîãèè íàõîäÿò øèðîêîå ïðèìåíåíèå â ïðàêòè÷åñêîì ðàñòåíèåâîäñòâå è ïîëó÷åíèè ïðîäóêòîâ ïèòàíèÿ. Öåëü íàñòîÿùåãî îáçîðà çàêëþ÷àëàñü â ñáîðå è ñèñòåìàòèçàöèè äàííûõ, êàñàþùèõñÿ âûÿâëåíèÿ, èäåíòèôèêàöèè, ñîñòàâà, äèíàìèêè, âîçìîæíîé ðîëè è ýëèìèíàöèè ñêðûòûõ áàêòåðèàëüíûõ êîíòàìèíàöèé â êóëüòóðå òêàíåé ðàñòåíèé. Áàêòåðèàëüíûå ìèêðîîðãàíèçìû, ïðèñóòñòâèå êîòîðûõ â êóëüòèâèðóåìûõ in vitro ðàñòèòåëüíûõ îáúåêòàõ íå ñîïðîâîæäàåòñÿ âèçóàëüíûìè ïðîÿâëåíèÿìè è ñïåöèôè÷åñêèìè ñèìïòîìàìè, â ëèòåðàòóðå îáîçíà÷àþò êàê ëàòåíòíûå, ñêðûòûå, ýíäîãåííûå, âíóòðåííèå, ýíäîôèòíûå, íåðåäêî èñïîëüçóÿ ýòè òåðìèíû êàê ñèíîíèìû. Íàèáîëåå ÷àñòî òàêèå áàêòåðèàëüíûå ìèêðîîðãàíèçìû â êóëüòóðå òêàíåé ðàñòåíèé íàçûâàþò ëàòåíòíûìè.  îäíîé èç ðàáîò (29) ïîä÷åðêèâàåòñÿ, ÷òî òåðìèí «ëàòåíòíûé» çàèìñòâîâàí èç ôèòîïàòîëîãèè, ãäå îí ïðèìåíÿåòñÿ äëÿ îïèñàíèÿ áåññèìïòîìíûõ ïàòîãåíîâ, â òî âðåìÿ êàê áàêòåðèàëüíûå ìèêðîîðãàíèçìû â êóëüòóðå ðàñòèòåëüíûõ òêàíåé íå îáÿçàòåëüíî ïàòîãåííû (èõ âëèÿíèå ìîæåò áûòü îòðèöàòåëüíûì, ïîëîæèòåëüíûì èëè îòñóòñòâîâàòü). Àâòîð öèòèðóåìîé ðàáîòû (29) íàðÿäó ñ äðóãèìè èññëåäîâàòåëÿìè (30, 31) ñ÷èòàåò áîëåå öåëåñîîáðàçíûì èñïîëüçîâàòü äëÿ óêàçàííûõ áàêòåðèàëüíûõ ìèêðîîðãàíèçìîâ òåðìèí «ñêðûòûå». Ñêðûòûå áàêòåðèàëüíûå ìèêðîîðãàíèçìû ìíîãèå èññëå4 äîâàòåëè íàçûâàþò ýíäîôèòàìè íà îñíîâàíèè èõ íàëè÷èÿ â êóëüòóðå ðàñòèòåëüíûõ îáúåêòîâ, ïðîøåäøèõ ïîâåðõíîñòíóþ ñòåðèëèçàöèþ. Ìû áóäåì óïîòðåáëÿòü òåðìèí «ýíäîôèòíûå áàêòåðèè» â ñîîòâåòñòâèè ñ åãî ïðèìåíåíèåì àâòîðàìè öèòèðóåìûõ ðàáîò. Ñîãëàñíî øèðîêî èñïîëüçóåìîìó îïðåäåëåíèþ, ýíäîôèòû — ýòî ìèêðîîðãàíèçìû, êîòîðûå, íå âûçûâàÿ ñèìïòîìîâ áîëåçíåé, â òå÷åíèå ÷àñòè èëè âñåãî æèçíåííîãî öèêëà îáèòàþò âíóòðè ðàñòåíèÿ (32).  ïðèðîäå îíè ïîñòóïàþò â ðàñòåíèå ÷åðåç óñòüèöà, ïîðàíåíèÿ, êîðíåâóþ ñèñòåìó. Ñóùåñòâåííóþ ðîëü â ôîðìèðîâàíèè ýíäîôèòíîé ìèêðîôëîðû èãðàåò ïåðåäà÷à ìèêðîîðãàíèçìîâ ÷åðåç ñåìåíà, à òàêæå èõ èíòðîäóêöèÿ âåêòîðíûìè îðãàíèçìàìè — áåñïîçâîíî÷íûìè èëè ãðèáàìè (28, 32). Èíòðîäóöèðîâàííûå ìèêðîîðãàíèçìû ìîãóò âêëþ÷àòüñÿ â ñîñòàâ ìèêðîôëîðû ðàñòåíèÿ â òî÷êå âõîæäåíèÿ è(èëè) ðàñïðîñòðàíÿòüñÿ ïî âñåìó ðàñòåíèþ (32), ïðè ýòîì îáëèãàòíîñòü íå ñëóæèò îáÿçàòåëüíûì óñëîâèåì (33). Ýíäîôèòíûå áàêòåðèè îáíàðóæåíû â öèòîïëàçìå êëåòîê, ìåæêëåòî÷íîì ïðîñòðàíñòâå (34) è â ñîñóäèñòîé ñèñòåìå (35) ðàñòåíèé.  ðÿäå ðàáîò ïðèñóòñòâèå ýíäîôèòíûõ ìèêðîîðãàíèçìîâ â êóëüòèâèðóåìûõ in vitro ðàñòèòåëüíûõ îáúåêòàõ ïîêàçàíî ñ ïîìîùüþ ñâåòîâîé è ýëåêòðîííîé ìèêðîñêîïèè, â òîì ÷èñëå ñ èñïîëüçîâàíèåì ìåòîäà in situ ãèáðèäèçàöèè (15, 16, 21, 36-38). È ñ ò î ÷ í è ê è á à ê ò å ð è à ë ü í î é ì è ê ð î ô ë î ð û. Ýíäîôèòíûå áàêòåðèè ïðîèñõîäÿò îò ýïèôèòíûõ áàêòåðèàëüíûõ àññîöèàöèé ðèçîñôåðû è ôèòîñôåðû ðàñòåíèÿ. Îñíîâíîé èñòî÷íèê ýíäîôèòíîé áàêòåðèàëüíîé ìèêðîôëîðû â êóëüòóðàõ ðàñòèòåëüíûõ òêàíåé — ýêñïëàíòû èñõîäíûõ ðàñòåíèé. Àñåïòè÷åñêèå ýêñïëàíòû äëÿ êóëüòóðû in vitro ñëîæíî ïîëó÷èòü îò ðàñòåíèé ñ ðîçåòî÷íîé ôîðìîé ðîñòà, äðåâåñíûõ, ìíîãîëåòíèõ (12, 38), ïðîèçðàñòàþùèõ â ñûðûõ ìåñòàõ, ñîáðàííûõ â ïåðèîä âëàæíîé è òåïëîé ïîãîäû, áîëüíûõ ðàñòåíèé (21, 39), à òàêæå ïðè èñïîëüçîâàíèè ïîäçåìíûõ îðãàíîâ (êîðíåé, êîðíåâèù, êëóáíåëóêîâèö) (40, 41), ïî÷åê (èç-çà ïëîòíîãî è ìíîãîñëîéíîãî ëèñòîâîãî ôóòëÿðà), ýïèäåðìàëüíûõ òêàíåé, îñîáåííî ñ âîëîñêàìè íà ïîâåðõíîñòè (42, 43). Ïðè ñòåðèëèçàöèè ðàñòèòåëüíîãî ìàòåðèàëà íåêîòîðàÿ ÷àñòü áàêòåðèàëüíûõ ýïèôèòîâ ìîæåò îñòàâàòüñÿ â íåäîñòóïíûõ äëÿ äåçèíôèöèðóþùèõ ðàñòâîðîâ ìåñòàõ, òàêèõ êàê çàêðûòûå óñòüèöà, ñêëàäêè ïîâåðõíîñòè êîðíåâûõ ÷åðåíêîâ, ïðîñòðàíñòâà ìåæäó ýïèäåðìàëüíûìè êëåòêàìè (5, 9). Ê èñòî÷íèêàì ñèñòåìíîé áàêòåðèàëüíîé èíôåêöèè â êóëüòóðå òêàíåé ðàñòåíèé ìîãóò áûòü îòíåñåíû òàêæå ðàáî÷åå ìåñòî, îïåðàòîð, èíñòðóìåíòû, ïîñóäà (2, 44). Ñïîðû íåêîòîðûõ áàêòåðèé ñîõðàíÿþòñÿ ïðè àâòîêëàâèðîâàíèè (36) è äîëãî îñòàþòñÿ æèçíåñïîñîáíûìè â ýòèëîâîì ñïèðòå (37). Ì å ò î ä û â û ÿ â ë å í è ÿ è è ä å í ò è ô è ê à ö è è á à ê ò å ð è é. Äëÿ âûÿâëåíèÿ è èäåíòèôèêàöèè ñêðûòûõ áàêòåðèàëüíûõ êîíòàìèíàöèé èñïîëüçóþò ïèòàòåëüíûå ñðåäû è ôèçèîëîãè÷åñêèå òåñòû, ìåòîäû, îñíîâàííûå íà ïðèìåíåíèè ôàãîâ, ïðîôèëèðîâàíèè æèðíûõ êèñëîò è áåëêîâ, à òàêæå òèïèðîâàíèå ãåíîòèïîâ ñ ïîìîùüþ MALDI TOF (Matrix assisted laser desorption/ionization time of flight) ìàññ-ñïåêòðîìåòðèè è ìîëåêóëÿðíîãåíåòè÷åñêèõ ìàðêåðîâ (RAPD-PCR — random amplified polymorphic DNA polymerase chain reaction, REP-PCR — repetitive extragenic palindromic polymerase chain reaction, AFLP — amplified fragment length polymorphism, ARDRA — amplified ribosomal DNA restriction analysis, 16S-rRNA). Óêàçàííûå ïðèåìû ñïåöèôè÷íû ïðè ìîíèòîðèíãå íà ðàçíîì òàêñîíîìè÷åñêîì óðîâíå. Òàê, áîëüøèíñòâî èç íèõ ïîçâîëÿåò îïðåäåëèòü áàêòåðèàëüíûå ìèêðîîðãàíèçìû íà óðîâíå ñåìåéñòâà, ðîäà è âèäà, íî äëÿ àòòðèáóòèðîâà5 íèÿ ïîäâèäîâ, áèîâàðîâ è øòàììîâ ïðåäïî÷òèòåëüíåå èñïîëüçîâàòü ñîâðåìåííûå áèîõèìè÷åñêèå è ìîëåêóëÿðíî-ãåíåòè÷åñêèå ìåòîäû (45). Íàèáîëåå øèðîêî ïðèìåíÿþò äâà ñïîñîáà âûÿâëåíèÿ è èäåíòèôèêàöèè áàêòåðèé. Îäèí èç íèõ, òðàäèöèîííûé, îñíîâàí íà èñïîëüçîâàíèè êóëüòóðàëüíûõ è ìîðôîëîãè÷åñêèõ õàðàêòåðèñòèê, à òàêæå õèìè÷åñêèõ è áèîõèìè÷åñêèõ ðåàêöèé (46). Îí áîëåå äîñòóïåí è íå òðåáóåò äîðîãîñòîÿùåãî îáîðóäîâàíèÿ, îäíàêî íå ïîçâîëÿåò âûÿâèòü íåêóëüòèâèðóåìûå, òî åñòü íå ìåòàáîëèçèðóþùèå ñóáñòðàò ïèòàòåëüíûõ ñðåä, ôîðìû áàêòåðèé. Âòîðîé ìåòîä, ìîëåêóëÿðíî-ãåíåòè÷åñêèé, áàçèðóåòñÿ íà àíàëèçå ãåíîâ, êîäèðóþùèõ ýâîëþöèîííî êîíñåðâàòèâíûå ðèáîñîìàëüíûå ÐÍÊ, ïîñêîëüêó ýòè ãåíû ïðèñóòñòâóþò âî âñåõ áàêòåðèàëüíûõ êëåòêàõ è ðîäîñïåöèôè÷íû äëÿ áîëüøèíñòâà ìèêðîîðãàíèçìîâ (23). Äëÿ èäåíòèôèêàöèè ñåêâåíèðóþò ïîñëåäîâàòåëüíîñòè ðèáîñîìàëüíûõ ãåíîâ, êîäèðóþùèõ 23SðÐÍÊ áîëüøîé ñóáúåäèíèöû (äëèíà ~3000 ï.í.) è 16S-ðÐÍÊ ìàëîé ñóáúåäèíèöû (~1500 ï.í.), à òàêæå ó÷àñòêè âíóòðåííèõ òðàíñêðèáèðóåìûõ ñïåéñåðîâ (internal transcribed spacers — ITS) (47). ×àñòî îïðåäåëÿþò ðàçëè÷íûå ïîñëåäîâàòåëüíîñòè 16S-ðÐÍÊ, èìåþùèå êàê êîíñåðâàòèâíûå ñàéòû, îäèíàêîâûå ó âñåõ ïðîêàðèîòîâ, òàê è ïðèãîäíûå äëÿ èäåíòèôèêàöèè âèäîñïåöèôè÷íûå ó÷àñòêè (48, 49). Åùå áîëåå èíôîðìàòèâíû ïîñëåäîâàòåëüíîñòè ðèáîñîìàëüíûõ ñïåéñåðîâ 16S—23S-ðÐÍÊ, çíà÷èòåëüíî áîëåå âàðèàáåëüíûå ïî ðàçìåðàì è ñòðóêòóðå ïî ñðàâíåíèþ ñ ðàéîíàìè ñàìèõ ãåíîâ. Ïîýòîìó âíóòðåííèå òðàíñêðèáèðóåìûå ñïåéñåðû ïðåèìóùåñòâåííî èñïîëüçóþò äëÿ ðàçëè÷åíèÿ ìèêðîîðãàíèçìîâ íà óðîâíå âèäîâ è äàæå øòàììîâ (50). Äëÿ àìïëèôèêàöèè ôðàãìåíòîâ ãåíîâ 16S-ðÐÍÊ è ITS ðåãèîíîâ îñóùåñòâëÿþò ïîëèìåðàçíóþ öåïíóþ ðåàêöèþ (ÏÖÐ) ñ ìåòàãåíîìíîé ÄÍÊ è ñîîòâåòñòâóþùèìè ñïåöèôè÷åñêèìè ïðàéìåðàìè (13, 51, 52). Ïîëó÷åííûå ïðîäóêòû ñåêâåíèðóþò è ïðîâîäÿò ïîèñê ãîìîëîãè÷íûõ ïîñëåäîâàòåëüíîñòåé ñ ïîìîùüþ áàçû äàííûõ GenBank (53) äëÿ òàêñîíîìè÷åñêîé èäåíòèôèêàöèè áàêòåðèé â èññëåäóåìîì ìàòåðèàëå.  ïóáëèêàöèè À.Â. Ïèíåâè÷à (54) óïîìèíàåòñÿ î ñåêâåíèðîâàíèè ãåíîìîâ 60 âèäîâ áàêòåðèé, â òî âðåìÿ êàê îáùåå ÷èñëî îïèñàííûõ áàêòåðèàëüíûõ âèäîâ ñîñòàâëÿåò 5007. È ä å í ò è ô è ê à ö è ÿ á à ê ò å ð è é. Èäåíòèôèêàöèÿ ìèêðîîðãàíèçìîâ, êîëîíèçèðóþùèõ in vitro êóëüòóðû ðàñòåíèé, äàåò âîçìîæíîñòü èçó÷àòü âëèÿíèå áàêòåðèé íà õîçÿèíà, ïðîâîäèòü íàïðàâëåííóþ õèìèîòåðàïèþ, ñîçäàâàòü áàíê äàííûõ ïî ìèêðîîðãàíèçìàì, àññîöèàòèâíûì ñ êóëüòóðîé ðàñòèòåëüíûõ òêàíåé.  ðàííèõ ðàáîòàõ äëÿ èäåíòèôèêàöèè â îñíîâíîì ïðèìåíÿëè òåñòû êëàññè÷åñêîé ìèêðîáèîëîãèè — îïðåäåëåíèå ñïîñîáíîñòè áàêòåðèàëüíîé êóëüòóðû ê ðîñòó íà ïèòàòåëüíûõ ñðåäàõ ðàçíîãî ñîñòàâà, îêðàñêà ïî Ãðàìó, ìîðôîëîãèÿ è öâåò êîëîíèé (4, 6, 9, 10, 46). Ñîâðåìåííûå ìåòîäû ïîçâîëÿþò ñóùåñòâåííî äîïîëíèòü èíôîðìàöèþ î òàêñîíîìè÷åñêîì ðàçíîîáðàçèè áàêòåðèé, àññîöèðîâàííûõ ñ êóëüòóðîé òêàíåé ðàñòåíèé. Áàçà äàííûõ ïî òàêèì ìèêðîîðãàíèçìàì ñòðåìèòåëüíî óâåëè÷èâàåòñÿ.  òàáëèöå ïðèâåäåí òàêñîíîìè÷åñêèé ñîñòàâ áàêòåðèàëüíûõ ýíäîôèòîâ â in vitro êóëüòóðàõ äëÿ ñðàâíèòåëüíî îãðàíè÷åííîé âûáîðêè èññëåäîâàííûõ ðàñòåíèé, ñâèäåòåëüñòâóþùèé î ðàçíîîáðàçèè ôîðì, ñïîñîáíûõ êîëîíèçèðîâàòü òêàíè â êóëüòóðå in vitro — íèøå, â êîòîðîé óñëîâèÿ ðåçêî îòëè÷àþòñÿ îò ïðèðîäíûõ. Ïðè ýòîì îòìå÷àåòñÿ îòñóòñòâèå ñïåöèôè÷åñêîãî ñîñòàâà ýíäîôèòíûõ áàêòåðèé â in vitro êóëüòóðàõ ðàñòåíèé ðàçíîé ñèñòåìàòè÷åñêîé ïðèíàäëåæíîñòè è â ýêñïëàíòàõ, îòíîñÿùèõñÿ ê ðàçíûì îðãàíàì ðàñòåíèÿ. Òàêîé æå âûâîä ìîæíî ñäåëàòü, àíàëèçèðóÿ äàííûå ïî èäåíòèôèêàöèè áàêòåðèé â êóëüòóðàõ òêàíåé, ïîëó÷åííûå â áîëåå ðàííèõ èññëåäîâàíèÿõ (4, 6, 9, 10). 6 Ñðåäè èäåíòèôèöèðîâàííûõ ýíäîôèòíûõ áàêòåðèé âûÿâëåíû ïîòåíöèàëüíî ïîëåçíûå äëÿ èíòàêòíûõ ðàñòåíèé, â ÷àñòíîñòè Streptomycete, Pantoea agglomerans è äð., à òàêæå ïàòîãåííûå äëÿ ÷åëîâåêà, íàïðèìåð Ralstonia mannitolytica, Staphylococcus epidermidis, Corynebacterium amycolatum, Bacillus neonatiensis, Salmonella è Nocaridia spp. (13). Ä è í à ì è ê à ý ê ñ ï ð å ñ ñ è è á à ê ò å ð è é. Äëèòåëüíîå áåññèìïòîìíîå ïðèñóòñòâèå áàêòåðèé â in vitro ðàñòèòåëüíûõ êóëüòóðàõ îáåñïå÷èâàåòñÿ äâóìÿ ïðîòèâîïîëîæíûìè ïðîöåññàìè — îãðàíè÷åíèåì ðîñòà è ïîääåðæàíèåì æèçíåäåÿòåëüíîñòè ýòèõ ìèêðîîðãàíèçìîâ. Ðîñò ïîäàâëÿåòñÿ ôàêòîðàìè, ñîïðîâîæäàþùèìè êóëüòèâèðîâàíèå ðàñòèòåëüíûõ îáúåêòîâ: pH (ïîäêèñëåíèå ïèòàòåëüíîé ñðåäû), òåìïåðàòóðà (25 °Ñ) íèæå îïòèìóìà äëÿ ðîñòà áàêòåðèé, âîçìîæíîå àêòèâèðîâàíèå ìåõàíèçìîâ, îáóñëîâëèâàþùèõ óñòîé÷èâîñòü ðàñòèòåëüíûõ êóëüòóð ê áàêòåðèÿì (55).  òî æå âðåìÿ æèçíåñïîñîáíîñòü áàêòåðèàëüíûõ ìèêðîîðãàíèçìîâ â êóëüòóðå ðàñòèòåëüíûõ òêàíåé ïîääåðæèâàåòñÿ çà ñ÷åò ýêññóäàòîâ, âûäåëÿåìûõ ýêñïëàíòîì, òàê êàê áîëüøèíñòâî áàêòåðèé, íåñìîòðÿ íà ãåòåðîòðîôíûé òèï ïèòàíèÿ, íå ìîãóò íàäåæíî ñóùåñòâîâàòü â îòñóòñòâèå ðàñòèòåëüíîãî ìàòåðèàëà (12, 55).  ðåçóëüòàòå ñîõðàíÿåòñÿ íåêîòîðûé íåâûñîêèé òèòð áàêòåðèé, àññîöèèðîâàííûõ ñ êóëüòóðîé òêàíåé ðàñòåíèé, ñ ÷åì ñâÿçàíà áåññèìïòîìíîñòü è òðóäíî èñêîðåíÿåìîå äëèòåëüíîå ïðèñóòñòâèå ìèêðîîðãàíèçìîâ (ïåðñèñòåíòíîñòü). Áûñòðàÿ ïðîëèôåðàöèÿ áàêòåðèàëüíûõ êëåòîê ìîæåò íàñòóïèòü äàæå ïðè íåáîëüøèõ èçìåíåíèÿõ ïåðâîíà÷àëüíûõ óñëîâèé — âñëåäñòâèå ïîâûøåíèÿ òåìïåðàòóðû îêðóæàþùåãî âîçäóõà, èçìåíåíèÿ êèñëîòíîñòè èëè ñîñòàâà ïèòàòåëüíîé ñðåäû, íàïðèìåð â ðåçóëüòàòå ïîñòóïëåíèÿ äîïîëíèòåëüíîãî àçîòà èç îòìèðàþùèõ òêàíåé ýêñïëàíòà (55, 56), à òàêæå ïðè ñóáêóëüòèâèðîâàíèè ñòàðûõ êóëüòóð íà ïèòàòåëüíîé ñðåäå ñ âûñîêîé êîíöåíòðàöèåé öèòîêèíèíîâ (8, 57). Ðàçìíîæåíèå áàêòåðèé èíäóöèðóåòñÿ óâåëè÷åíèåì êîíöåíòðàöèè ýêññóäàòîâ, âûäåëÿåìûõ ðàñòèòåëüíûìè êóëüòóðàìè in vitro, êîòîðîå, â ñâîþ î÷åðåäü, ìîæåò ñòèìóëèðîâàòüñÿ ïîâûøåíèåì òåìïåðàòóðû îêðóæàþùåé ñðåäû, óâåëè÷åíèåì ïëîòíîñòè in vitro êóëüòóð, ïåðåíîñîì èõ íà ïèòàòåëüíóþ ñðåäó äëÿ óêîðåíåíèÿ (55).  ðåçóëüòàòå áûñòðîãî ðàçìíîæåíèÿ áàêòåðèàëüíûõ ìèêðîîðãàíèçìîâ âîçìîæíî ïîÿâëåíèå âèäèìûõ ñèìïòîìîâ â in vitro êóëüòóðàõ è(èëè) âèäèìîãî ðîñòà íà ñðåäå êóëüòèâèðîâàíèÿ ýêñïëàíòîâ (3). Âûõîä áàêòåðèàëüíûõ ìèêðîîðãàíèçìîâ èç êóëüòèâèðóåìûõ òêàíåé â òîëùó ïèòàòåëüíîé ñðåäû, êàê ïðàâèëî, ñîïðîâîæäàåòñÿ îáðàçîâàíèåì â íåé ìóòíîãî îðåîëà, îòìå÷åííîãî ìíîãèìè èññëåäîâàòåëÿìè (7, 10, 11, 58, 59).  îòñóòñòâèå ðåãóëèðóþùåé ðîëè öåëîãî îðãàíèçìà áåñêîíòðîëüíîå ðàçìíîæåíèå ýíäîôèòîâ â êóëüòóðå òêàíåé ðàñòåíèé ìîæåò ñòèìóëèðîâàòüñÿ ñîáñòâåííî in vitro êóëüòèâèðîâàíèåì êàê ôàêòîðîì ñòðåññà (16).  ðÿäå ðàáîò ïîêàçàíî, ÷òî ïî ìåðå óâåëè÷åíèÿ ÷èñëà ïàññàæåé äîëÿ ðàñòèòåëüíûõ êóëüòóð ñ âèäèìîé áàêòåðèàëüíîé êîíòàìèíàöèåé óìåíüøàåòñÿ, ñî ñêðûòîé — âîçðàñòàåò. Ïðè ýòîì ìîæåò ïðîèñõîäèòü èçìåíåíèå ñîñòàâà ìèêðîîðãàíèçìîâ, óâåëè÷åíèå ÷èñëà ãðàìïîëîæèòåëüíûõ ôîðì è ñïîñîáíîñòè áàêòåðèé ê êóëüòèâèðîâàíèþ (4, 13, 21). Òàê, â ïàññèðóåìîé êóëüòóðå èíäèâèäóàëüíûõ ìèêðîðàñòåíèé áàíàíà ïîêàçàíî ñóùåñòâîâàíèå áàêòåðèàëüíûõ ýíäîôèòîâ, êîòîðûå â ïåðâûõ òðåõ ïàññàæàõ áûëè íåêóëüòèâèðóåìûìè è âûÿâèëèñü òîëüêî ìåòîäîì ñåêâåíèðîâàíèÿ ãåíà 16SðÐÍÊ (áàêòåðèè VBNC — viable but nonculturable). Îäíàêî â ïîñëåäóþùèõ ïàññàæàõ (ñ 4-ãî äî 18-ãî) â ýòèõ æå ìèêðîðàñòåíèÿõ âûÿâèëèñü êóëüòèâèðóåìûå áàêòåðèè (13, 21). Àâòîðû öèòèðóåìûõ ðàáîò ïîëàãàþò, ÷òî ïî ìåðå âîçðàñòàíèÿ ÷èñëà ïàññàæåé ðàñòèòåëüíûõ êóëüòóð ñîäåðæàùèåñÿ â íèõ 7 VBNC ýíäîôèòû ìîãóò ïðèîáðåòàòü ñòàòóñ êóëüòèâèðóåìûõ. Âëèÿíèå áàêòåðèé íà êîëîíèçèðóåìûå èìè ðàñòèò å ë ü í û å ê ó ë ü ò ó ð û in vitro. Áàêòåðèàëüíûå ìèêðîîðãàíèçìû, àññîöèèðîâàííûå ñ êóëüòóðîé ðàñòèòåëüíûõ òêàíåé, ñïîñîáíû îòðèöàòåëüíî âëèÿòü íà ðåãåíåðàöèîííóþ ñïîñîáíîñòü êàëëóñà, êëåòî÷íûõ ñóñïåíçèé è ïðîòîïëàñòîâ (56, 38), óãíåòàòü ìèêðîêëîíàëüíîå ðàçìíîæåíèå, ðîñò è óêîðåíåíèå ïîáåãîâ, âûçûâàòü ãèáåëü êóëüòèâèðóåìûõ in vitro è ex vitro ðàñòèòåëüíûõ îáúåêòîâ (3, 11, 13, 21, 29, 36, 37, 57, 60). Ñêðûòûå áàêòåðèàëüíûå êîíòàìèíàöèè â ðàñòèòåëüíûõ êóëüòóðàõ ìîãóò ñëóæèòü ïðåïÿòñòâèåì äëÿ âîñïðîèçâîäèìîñòè ïðîòîêîëîâ (29) è èìåòü îòíîøåíèå ê ïîÿâëåíèþ ýïèãåíåòè÷åñêèõ ñîìàêëîíàëüíûõ âàðèàíòîâ (61). Îäíà èç âåðîÿòíûõ ïðè÷èí íåãàòèâíîãî âëèÿíèÿ ñêðûòûõ áàêòåðèàëüíûõ ìèêðîîðãàíèçìîâ — ïîâûøåíèå èõ òèòðà. Òàêàÿ âîçìîæíîñòü ðàññìàòðèâàåòñÿ íåêîòîðûìè àâòîðàìè â ñâÿçè ñ ãèáåëüþ ðàñòèòåëüíûõ êóëüòóð ïîñëå 2-ãî èëè 3-ãî ñóáêóëüòèâèðîâàíèÿ (18, 62).  ñâîèõ èññëåäîâàíèÿõ ìû òàêæå îòìå÷àëè, ÷òî 2-é è 3-é ïàññàæè — êðèòè÷åñêèå äëÿ ìèêðîðàçìíîæåíèÿ ââåäåííûõ â êóëüòóðó in vitro ýêñïëàíòîâ ìàëèíû (59). Óãíåòàþùåå äåéñòâèå áàêòåðèé íà in vitro ðàñòèòåëüíûå îáúåêòû ìîæåò áûòü òàêæå ñâÿçàíî ñ èçìåíåíèåì êèñëîòíîñòè ïèòàòåëüíîé ñðåäû èëè åå ñîñòàâà ïîä âëèÿíèåì áàêòåðèé (ïîòðåáëåíèå ñàõàðîçû, îáðàçîâàíèå ãåðáèöèäíûõ ñóáñòàíöèé) (63). Îñîáûé èíòåðåñ ïðåäñòàâëÿþò ðàáîòû ïî èçó÷åíèþ âëèÿíèÿ àêñåíè÷åñêèõ áàêòåðèàëüíûõ êóëüòóð íà in vitro ðàñòèòåëüíûå îáúåêòû. Ïîêàçàíî, ÷òî ôèëüòðàòû êóëüòóð Acinetobacter è Lactobacillus plantarum, âûäåëåííûõ èç äåãðàäèðóþùèõ êàëëóñîâ ðàñòåíèé, ïðè èíîêóëèðîâàíèè â ðàñòèòåëüíûå ýêñïëàíòû èëè äîáàâëåíèè â ïèòàòåëüíóþ ñðåäó ðåçêî ñíèæàëè ðåãåíåðàöèþ ïîáåãîâ ó êàëëóñîâ (56, 63). Áàêòåðèè Mycobacterium obuense è M. aichiense óãíåòàëè ðàçâèòèå ñåìÿí â êóëüòóðå in vitro (38). Ïîëåçíóþ ðîëü ýíäîôèòíûõ ìèêðîîðãàíèçìîâ â in vitro êóëüòóðàõ ðàñòåíèé íà÷àëè èññëåäîâàòü ïîçäíåå, è ýòè äàííûå ìåíåå ìíîãî÷èñëåííû.  ðÿäå ðàáîò îòìå÷åí ïîçèòèâíûé ýôôåêò áàêòåðèé ðîäà Methylobacterium íà èíäóêöèþ îðãàíîãåíåçà è ýìáðèîãåíåçà (15, 17, 64-68). Ïðåäïîëàãàåòñÿ, ÷òî âûÿâëåííûå ìåòîäîì in situ ãèáðèäèçàöèè â êóëüòóðå òêàíåé ñîñíû ýíäîôèòû Mycobacterium sp., Methylobacterium spp., Pseudomonas spp., Rhodotorula minuta ìîãóò èìåòü ïîëîæèòåëüíîå âëèÿíèå íà ìîðôîãåíåç â êóëüòóðå in vitro (17) ïî àíàëîãèè ñ äåéñòâèåì áàêòåðèé íà ðàçâèâàþùèåñÿ òêàíè æèâîòíûõ (69). Ïîêàçàíî ñòèìóëèðóþùåå âëèÿíèå Bacillus circulans íà ñîìàòè÷åñêèé ìîðôîãåíåç ó ãåðàíè (Pelargonium ½ hortorum Bailey) (70). Òàêèì îáðàçîì, áàêòåðèàëüíûå ìèêðîîðãàíèçìû, àññîöèèðîâàííûå ñ òêàíÿìè ðàñòåíèé â êóëüòóðå in vitro, ìîãóò îêàçûâàòü íà íèõ êàê ïîçèòèâíûå âîçäåéñòâèÿ, òàê è èãðàòü ðîëü ôàêòîðîâ, ëèìèòèðóþùèõ ðîñò è æèçíåäåÿòåëüíîñòü.  ãåíåòè÷åñêèõ áàíêàõ ðàñòåíèé îñíîâíîå òðåáîâàíèå ê in vitro è êðèîêîëëåêöèÿì ðàñòåíèé çàêëþ÷àåòñÿ â îòñóòñòâèè âíóòðåííåé ìèêðîôëîðû. Ãíîòîáèîòè÷åñêèé ñòàòóñ ñåðòèôèöèðîâàííîãî ðàñòèòåëüíîãî ìàòåðèàëà ïîçâîëÿåò èçáåæàòü ïåðåíîñà ñêðûòûõ èíôåêöèé ïðè èñïîëüçîâàíèè òåõíîëîãèé ìèêðîðàçìíîæåíèÿ è ñëóæèò êðèòåðèåì íàäåæíîãî ñîõðàíåíèÿ ãåíîòèïîâ â êîíòðîëèðóåìûõ óñëîâèÿõ ñðåäû. Äëÿ ñåðòèôèêàöèè ðàñòèòåëüíîãî ìàòåðèàëà â íåì ïðîâîäÿò âûÿâëåíèå, èäåíòèôèêàöèþ è ýëèìèíàöèþ îñíîâíûõ âèðóñîâ, ìèêîïëàçì è âñåé áàêòåðèàëüíîé ìèêðîôëîðû (39). Ðàçíîîáðàçèå, ìíîãî÷èñëåííîñòü è äèíàìè÷åñêîå ñîñòîÿíèå áàêòåðèé â in vitro ðàñòèòåëüíûõ êóëüòóðàõ ñîçäàþò íåîáõîäèìîñòü ïåðèîäè÷åñêîãî òåñòèðîâàíèÿ ðàñòèòåëüíîãî ìàòåðèàëà íà ïðèñóòñòâèå áàêòåðèé 8 Ýíäîôèòíûå áàêòåðèè, âûÿâëåííûå â in vitro êóëüòóðå òêàíåé ðàñòåíèé Ðîä, âèä (ñîðò ðàñòåíèÿ) Chrysanthemum (Arka Swarna) Pinus sylvestris Pinus sylvestris Prunus cerasus (Montmorency) Bactris gasipaes Musa sp. Òèï êóëüòóð (ïðîäîëæèòåëüíîñòü êóëüòèâèðîâàíèÿ in vitro) Ìèêðîðàñòåíèÿ (1-7 ïàññàæåé) Êàëëóñíàÿ êóëüòóðà Êàëëóñíàÿ è ñóñïåíçèîííàÿ êóëüòóðû Ìèêðîðàñòåíèÿ Ìèêðîðàñòåíèÿ Ìèêðîðàñòåíèÿ (äëèòåëüíîå ìèêðîêëîíèðîâàíèå) Musa sapientum (Chini champa) Âåðõóøêè ïîáåãîâ (1-2 íåä êóëüòèâèðîâàíèÿ) Larix, Picea Ñóñïåíçèîííàÿ êóëüòóðà (6-8 íåä êóëüòèâèðîâàíèÿ) Ìèêðîðàñòåíèÿ Chrysanthemum (Arka Ravi) Rubus idaeus, Fragaria ananassa, Ñerasus vulgaris, Ribes nigrum Ìèêðîðàñòåíèÿ èç êîëëåêöèè in vitro Jatropha curcas Ëèñòîâûå ýêñïëàíòû Fragaria ananassa Ìåðèñòåìà (Camarosa, Sweet Charlie, Oso-Grande) Musa sp. Âåðõóøêè ïîáåãîâ Ðîä, âèä áàêòåðèé (÷àñòîòà îáíàðóæåíèÿ, %) Ðàçëè÷íûå ìîðôîòèïû Curtobacterium citreum Hormonema dematioides (isolates L, M), Methylobacterium extorquens (isolate F), Pseudomonas synxantha (isolates G, H, J), Pseudomonas sp. (isolates K, N), Rhodotorula minuta (isolate T) Methylobacterium extorquens Ññûëêà (8) (16) (18) Pseudomonas aeruginosa (19) Brevibacillus sp., Moraxella sp. Alcaligenes, Bacillus spp., Brachybacterium, Brevibacterium, Brevundimonas, Corynebacterium, Enterobacter, Klebsiella, Kocuri, Methylobacterium, Microbacterium, Oceanobacillus, Ochrobactrum, Pantoea, Pseudomonas, Ralstonia, Staphylococcus, Tetrasphaer spp. Ãðàìïîëîæèòåëüíûå: Bacillus megaterium, Cellulomona uda, C. flavigena, Corynebacterium paurometabolum Ãðàìîòðèöàòåëüíûå: Erwinia cypripedii, Klebsiell sp., Pseudomonas sp. Acinetobacter (20) (21) Enterobacter, Methylobacterium spp., Ralstonia Arthrobacter (23,5 %), Bacillus (51,5 %) (57) Ðåæå âñòðå÷àþòñÿ Agrobacterium, Bacterium, Brevibacterium, Flavobacterium, Micrococcus, Mycobacterium, Pseudomonas Enterobacter ludwigii 17 áàêòåðèàëüíûõ øòàììîâ èç ðîäîâ Bacillus, Sphingopyxis, Virgibacillus Bacillus, Brevibacillus, Paenibacillus, Staphylococcus spp., Virgibacillus; (22) (56) (58) (62) (64) (51) Actinobacteria (Cellulomonas, Micrococcus, Corynebacterium, Kocuria spp.); α-proteobacteria (Paracoccus sp.); Y-proteobacteria (Acinetobacter spp., Pseudomonas) Ilex dumosa Ñåãìåíòû óçëîâ ïîáåãà Achromobacter, Stenotrophomonas maltophilia Echinacea Ìèêðîðàñòåíèÿ Acinetobacter, Bacillus, Pseudomonas, Stenotrophomonas, Wautersia (Ralstonia) Carica papaya Âåðõóøêè ïîáåãîâ Agrobacterium (A. tumefaciens), Bacillus (B. benzoevorans), Brevundimonas (B. aurantiaca), Enterobacter (E. cloacae), Methylobacterium (M. rhodesianum), Microbacterium (M. esteraromaticum), Pantoea (P. ananatis) (70 %), Sphingomonas, Wautersia (Ralstonia) Potato Ìèêðîðàñòåíèÿ Bacillus pumilus Carica papaya Âåðõóøêè ïîáåãîâ Lysinibacillus fusiformis, Paenibacillus sp., (1 ìåñ êóëüòèâèðîâàíèÿ) Pantoea sp., Ralstonia mannitolilytica, Sphingomonas sp. Limonium simuatum Ìèêðîðàñòåíèÿ Alcaligenes sp., Pasteurella multocida, Stenotrophomonas maltophilia Ananas comosus Ìèêðîðàñòåíèÿ (5 ëåò êóëüòèâèðî- Actinobacteria, Alphaproteobacteria, âàíèÿ) Betaproteobacteria Piper nigrum, Piper Êàëëóñíàÿ êóëüòóðà (ïåðâè÷íûå Aminobacter, Flavobacterium, Morococcus, colubrinum, Taxus ýêñïëàíòû) Paracoccus Pseudomonas, Psychrobacter, baccata subsp. wallichiRhizobacter ana, Withania somnifera (71) (72) (73) (74) (75) (76) (77) (78) 9 è èñïîëüçîâàíèÿ ðàçíûõ ìåòîäîâ äëÿ èõ âûÿâëåíèÿ. Ýòî ïðåäñòàâëÿåò îïðåäåëåííóþ ñëîæíîñòü ïðè ðàáîòå ñ áîëüøèìè in vitro êîëëåêöèÿìè â ãåíåòè÷åñêèõ áàíêàõ ðàñòåíèé. À í ò è á à ê ò å ð è à ë ü í à ÿ ò å ð à ï è ÿ. Äëÿ ýëèìèíàöèè áàêòåðèàëüíûõ ìèêðîîðãàíèçìîâ ïðèìåíÿþòñÿ àíòèáèîòèêè (79). Îïèñàíèå è ñâîéñòâà íåêîòîðûõ àíòèáèîòèêîâ, ïðèìåíÿåìûõ äëÿ õèìèîòåðàïèè ðàñòåíèé, ïðèâåäåíû â îáçîðå G. Seckinger ñ ñîàâò. (80). Èäåàëüíûå àíòèáèîòèêè, ðåêîìåíäóåìûå äëÿ ýëèìèíàöèè áàêòåðèé â êóëüòóðå ðàñòèòåëüíûõ òêàíåé, äîëæíû áûòü áàêòåðèöèäíûìè, íåäîðîãèìè, íåòîêñè÷íûìè äëÿ ÷åëîâåêà, ðàñòâîðèìûìè â ïèòàòåëüíûõ ñðåäàõ è íå èçìåíÿòü èõ pH (9, 61). Ðåçóëüòàòèâíîñòü âûáîðà íàèáîëåå ýôôåêòèâíûõ àíòèáèîòèêîâ (ñ øèðîêèì ñïåêòðîì äåéñòâèÿ èëè â ñïåöèôè÷åñêîé êîìáèíàöèè) ïîâûøàåòñÿ ïðè èäåíòèôèêàöèè áàêòåðèé â êóëüòèâèðóåìûõ in vitro ðàñòèòåëüíûõ îáúåêòàõ.  ñëó÷àå èñïîëüçîâàíèÿ êîìáèíàöèè àíòèáèîòèêîâ (îñîáåííî ïðè èõ ñèíåðãåòè÷åñêîì äåéñòâèè) ñíèæàåòñÿ ðèñê âîçíèêíîâåíèÿ óñòîé÷èâîñòè ê íèì ó áàêòåðèé, îäíàêî íåêîòîðûå àíòèáèîòèêè õèìè÷åñêè íåñîâìåñòèìû è â ñî÷åòàíèè ìîãóò íåéòðàëèçîâàòü äåéñòâèå äðóã äðóãà (71, 72). Ãðàìîòðèöàòåëüíûå áàêòåðèè (îíè ñîñòàâëÿþò áîëüøèíñòâî ñðåäè èäåíòèôèöèðîâàííûõ â êóëüòóðå ðàñòèòåëüíûõ òêàíåé) îñîáåííî òðóäíî ïîääàþòñÿ ýëèìèíàöèè èç-çà ôàêòè÷åñêè äâîéíîé êëåòî÷íîé ìåìáðàíû, çàòðóäíÿþùåé ïðîíèêíîâåíèå ìíîãèõ àíòèáèîòèêîâ. Ïîñëå ïðèìåíåíèÿ àíòèáàêòåðèàëüíîé òåðàïèè ðàñòèòåëüíûé ìàòåðèàë íåîáõîäèìî òåñòèðîâàòü íà ïðèñóòñòâèå áàêòåðèé íà ïðîòÿæåíèè 2-3 ïàññàæåé (71). Èñïîëüçîâàíèå àíòèáèîòèêîâ â êóëüòóðå ðàñòèòåëüíûõ òêàíåé îáúåêòèâíî îñëîæíÿåòñÿ ðàçëè÷íûìè ïðè÷èíàìè. Òàê, íåîáõîäèì ïîäáîð ýôôåêòèâíîãî àíòèáèîòèêà â áàêòåðèöèäíîé äëÿ êîíêðåòíîãî áàêòåðèàëüíîãî îðãàíèçìà êîíöåíòðàöèè è îöåíêà âëèÿíèÿ àíòèáèîòèêà íà in vitro êóëüòèâèðóåìûé ðàñòèòåëüíûé îáúåêò; íåèçáåæíî ïîÿâëåíèå áàêòåðèàëüíûõ øòàììîâ, ðåçèñòåíòíûõ ê ïðèìåíÿåìîìó àíòèáèîòèêó; àíòèáèîòèêè âûçûâàþò ïîâðåæäåíèå õëîðîïëàñòîâ è ìèòîõîíäðèé, ÷òî ïðîÿâëÿåòñÿ â õëîðîçå è ìîðôîëîãè÷åñêèõ èçìåíåíèÿõ ýêñïëàíòîâ (6, 9). Óñïåõè àíòèáàêòåðèàëüíîé òåðàïèè â êóëüòóðå òêàíåé ðàñòåíèé â çíà÷èòåëüíîé ñòåïåíè áóäóò îïðåäåëÿòüñÿ ðàçâèòèåì èññëåäîâàíèé â ýòîé îáëàñòè è ðàçðàáîòêîé íîâûõ êëàññîâ àíòèáèîòèêîâ. Èòàê, òàêñîíîìè÷åñêîå ðàçíîîáðàçèå ñêðûòîé (ýíäîôèòíîé) áàêòåðèàëüíîé ìèêðîôëîðû â in vitro ðàñòèòåëüíûõ êóëüòóðàõ âåëèêî è ìîæåò âêëþ÷àòü ôîðìû êàê ñ îòðèöàòåëüíûì, òàê è ñ ïîëîæèòåëüíûì âëèÿíèåì íà êîëîíèçèðóåìûå èìè ðàñòèòåëüíûå îáúåêòû. Ïî ìåðå êóëüòèâèðîâàíèÿ ðàñòèòåëüíîãî ìàòåðèàëà ìîæåò èçìåíÿòüñÿ òèòð, ñîñòàâ áàêòåðèàëüíûõ àññîöèàöèé, ñïîñîáíîñòü ê êóëüòèâèðîâàíèþ. Ïðîáëåìà ïîëó÷åíèÿ ãíîòîáèîòè÷åñêèõ êóëüòóð (â ÷àñòíîñòè, â in vitro êîëëåêöèÿõ ãåíåòè÷åñêèõ áàíêîâ ðàñòåíèé) ñâÿçàíà ñî ñëîæíîñòüþ âûÿâëåíèÿ è ýëèìèíàöèè áàêòåðèàëüíîé ìèêðîôëîðû. Àâòîðû âûðàæàþò ãëóáîêóþ áëàãîäàðíîñòü Ò.À. Ãàâðèëåíêî (Âñåðîññèéñêèé ÍÈÈ ðàñòåíèåâîäñòâà èì. Í.È. Âàâèëîâà) è Â.È. Ñàôðîíîâîé (Âñåðîññèéñêèé ÍÈÈ ñåëüñêîõîçÿéñòâåííîé ìèêðîáèîëîãèè) çà öåííûå çàìå÷àíèÿ ïðè îáñóæäåíèè ìàòåðèàëà, èçëîæåííîãî â ñòàòüå. ËÈÒÅÐÀÒÓÐÀ 1. 2. 10 L e i f e r t C., W o o d w a r d S. Laboratory contamination management: the requirement for microbiological quality assurance. Plant Cell Tiss. Cult., 1998, 52: 85-88 (doi: 1023/A:1005905604043). L e i f e r t C., C a s s e l l s A.C. Microbial hazards in plant tissue and cell cultures. In Vitro Cell. Dev. Biol. Plant., 2001, 37(2): 133-138 (doi: 10.1079/IVP2000129). 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. C a s s e l l s A.C. Contamination and its impact in tissue culture. Acta Hort., 2001, 560: 353-359. L e i f e r t C., W a i t e s W.M., N i c o l a s J.R. Bacterial contamination of micropropagated plant tissue cultures. J. Appl. Bact., 1989, 67: 353-361. C a s s e l l s A.C. Problems in tissue culture: culture contamination. In: Micropropagation technology and application /P.C. Debergh, R.H. Zimmerman (eds.). Kluwer Acad. Publishers, 1991: 31-44. R e e d B.M., M e n t z e r J., T a n p r a s e r t P., Y u X. Internal bacterial contamination of micropropagated hazelnut: identification and antibiotic treatment. Plant Cell Tiss. Cult., 1998, 52: 67-70. T h o m a s P. A three-step screening procedure for the detection of covert and endophytic bacteria in plant tissue cultures. Current Sci., 2004, 87: 67-72. P a n i c k e r B., T h o m a s P., J a n a k i r a m T., V e n u g o p a l a n R., N a r a y a n a p p a S.B. Influence of cytokinin levels on in vitro propagation of shy suckering chrysanthemum «Arka Swarna» and activation of endophytic bacteria. In vitro Cell Dev. Biol. Plant, 2007, 43(6): 614-622 (doi: 10.1007/s11627-007-9061-6). R e e d B.M., T a n p r a s e r t P. Detection and control of bacterial contaminants of plant tissue cultures. A review of recent literature. Plant Tissue Culture &. Biotechnology, 1995, 1(3): 137-142. T a n p r a s e r t P., R e e d B.M. Detection and identification of bacterial contaminants from strawberry runner explants. In vitro Cell Dev. Biol. Plant, 1997, 33: 221-226. Á ó ð ã ó ò è í À.Á., Ô å î ê ò è ñ ò î â à Í.Â., Ï ó í è í à Í.Â., È ã í à ò î â À.Í. Îïðåäåëåíèå âèäîâîé ïðèíàäëåæíîñòè áàêòåðèé, êîíòàìèíèðóþùèõ êóëüòóðó äðåâåñíûõ ðàñòåíèé in vitro. Òåç. äîêë. IX Ìåæä. êîíô. «Áèîëîãèÿ êëåòîê ðàñòåíèé in vitro è áèîòåõíîëîãèÿ». Çâåíèãîðîä, 2008: 60-61. L e i f e r t C., M o r r i s C., W a i t e s W.M. Ecology of microbial saprophytes and pathogens in tissue cultured and field grown plants. CRC Crit. Rev. Plant Sci., 1994, 13: 139-183 (doi: 10.1080/713608058). T h o m a s P., S w a r n a G.K., R o y P.K., P r a k a s h P. Identification of culturable and originally non-culturable endophytic bacteria isolated from shoot tip cultures of banana cv. Grand Naine. Plant Cell Tiss. Org. Cult., 2008, 93: 55-63 (doi: 10.1007/s11240-008-9341-9). R a f f e r t y S.M., W i l l i a m s S., F a l k i n e r F.R., C a s s e l s A.C. Persistence in in vitro cultures of cabbage (Brassica oleracea var. capitata L.) of human food poisoning pathogens: Esherichia coli and Serratia marcescens. Proc. Int. Symp. on Meth. and Marks. for Qual. Assur. in Micropropagation /A.C. Cassels, B.M. Doyle, R.F. Curry (eds.). Acta Hort., 2000, 530(ISHS): 145-151. P i r t t i l ä A.M., L a u k k a n e n H., P o s p i e c h H., M y l l y l a R., H o h t o l a A. Detection of intracellular bacteria in the buds of Scots pine (Pinus sylvestris L.) by in situ hybridization. Appl. Environ. Microbiol., 2000, 66: 3073-3077 (doi: 10.1128/AEM.66.7.3073-3077.2000). P i r t t i l ä A.M. Endophytes in the buds of Scots pine (Pinus sylvestris L.). Doc. Thesis. Acta Univ. Ouluensis, Ser. A Sci. Rerum Nat., 2001, 36: 1-55. P i r t t i l ä A.M., J o e n s u u P., P o s p i e c h H., J a l o n e n J., H o h t o l a A. Bud endophytes of Scots pine produce adenine derivatives and other compounds that affect morphology and mitigate browning of callus cultures. Physiologia Plantarum, 2004, 121: 305-312 (doi: 10.1111/j.0031-9317.2004.00330.x). P i r t t i l ä A.M., P o d o l i c h O., K o s k i m ä k i J.J., H o h t o l a E., H o h t o l a A. Role of origin and endophyte infection in browning of bud-derived tissue cultures of Scots pine (Pinus sylvestris L.). Plant Cell Tiss. Org. Cult., 2008, 95: 47-55 (doi: 10.1007/s11240-008-9413-x). K a m o u n R., L e p o i v r e P., B o x u s P. Evidence for the occurrence of endophytic prokaryotic contaminants in micropropagated plantlets of Prunus cerasus cv. Montmorency. In: Pathogen and microbial management in micropropagation /A.C. Cassells (ed.). Kluwer Acad. Publishers, Dordrecht, 1997: 145-148. D e A l m e i d a C.V., A n d r e o t e F.D., Y a r a R., T a n a k a F.A.O., A z e v e d o J.L., De A l m e i d a M. Bacteriosomes in axenic plants: endophytes as stable endosymbionts. Microbiol Biotech., 2009, 25: 1757-1764 (doi: 10.1007/s11274-009-0073). T h o m a s P., S w a r n a G.K., P a t i l P., R a w a l R.D. Ubiquitous presence of normally non-culturable endophytic bacteria in field shoot-tips of banana and their gradual activation to quiescent cultivable form in tissue cultures. Plant Cell Tiss. Org. Cult., 2008, 93: 39-54 (doi: 10.1007/s112-40-008-9340-x). H a b i b a U., R e z a S., S a h a M.L., K h a n M.R., H a d i u z z a m a n S. Endogenous bacterial contamination during in vitro culture of Banana: identification and prevention. Plant Tiss. Cult., 2002, 12: 117-124. R y a n R.P., G e r m a i n e K., F r a n k s A., R y a n D., D o w l i n g D.N. Bacterial endophytes: recent developments and applications. FEMS Microbiol. Lett., 2008, 278(1): 1-9. S a e n s E., B o r d a C., R e n a t a L., D a S i l v a M.G., P a d i l l a G. Searching for new antibiotics in endophytic microorganisms. Proc. 2nd Int. Symp. on Biological Control of Bacterial Plant Diseases. Orlando, FL, USA, 2008: 71 (doi: 10.11 11/j.1574-6982.2007.00918.x). Ì à ð ê î â à Þ.À., Ð î ì à í å í ê î À.Ñ., Ä ó õ à í è í à À.Â. Âûäåëåíèå áàêòåðèé ñåìåéñòâà Enterobacteriaceae èç ðàñòèòåëüíûõ òêàíåé. Ìèêðîáèîëîãèÿ, 2005, 74(5): 663-666. 11 26. L a c r o i x B., T z f i r a T., V a i n s t e i n A., C i t o v s k y V. A ñase of promiscuity: Agrobacterium’s endless hunt for new partners. Trends Genet., 2006, 22: 29-37 (doi: 10.1016/j.tig.2005.10.004). 27. B u l g a k o v V.P., K i s e l e v K.V., Y a k o v l e v K.V., Z h u r a v l e v Y.N., G o n t c h a r o v A.A., O d i n t s o v a N.A. Agrobacterium-mediated transformation of sea urchin embryos. Biotechnol. J., 2006, 1: 454-461 (doi: 10.1002/biot.200500045). 28. Ò è õ î í î â è ÷ È.À., Ï ð î â î ð î â Í.À. Ñåëüñêîõîçÿéñòâåííàÿ ìèêðîáèîëîãèÿ êàê îñíîâà ýêîëîãè÷åñêè óñòîé÷èâîãî àãðîïðîèçâîäñòâà: ôóíäàìåíòàëüíûå è ïðèêëàäíûå àñïåêòû. Ñåëüñêîõîçÿéñòâåííàÿ áèîëîãèÿ, 2011, 3: 3-9. 29. T h o m a s P. In vitro decline in plant cultures: detection of a legion of covert bacteria as the cause for degeneration of long-term micropropagated triploid watermelon cultures. Plant Cell Tiss. Org. Cult., 2004, 77: 173-179 (doi: 10.1023/B:TICU.0000016824.09108.c8.23). 30. H o l l a n d M.A., P o l a c c o J.C. PPFMs and other covert contaminants: is there more to plant physiology than just plant? Annu. Rev. Plant Physiol., 1994, 45: 197-209 (doi: 10.1146/annurev.pp.45.060194.001213). 31. H o r s c h R.B., K i n g J. A covert contaminant of cultured plant cells: elimination of a Hyphomicrobium sp. from cultures of Datura innoxia (Mill.). Plant Cell Tiss. Org. Cult., 1983, 2: 21-28. 32. H a l l m a n n J., Q u a d t - H a l l m a n n A., M a h a f t e e W.F. Endophytic bacteria in agricultural crops. Can. J. Microbiol., 1997, 43: 895-914. 33. B a l d a n i J.I., C a r u s o L., B a l d a n i V.L.D., G o i S.R., D o b e r e i n e r J. Recent advances in BNF with non-legume plants. Soil Biol. Biochem., 1997, 29: 911-922. 34. U l r i c h K., U l r i c h F., E w a l d D. Diversity of endophytic bacterial communities in poplar grown under field conditions. FEMS Microbiol. Ecol., 2008, 63: 169-180 (doi: 1111/15746941.2007.00419.x). 35. V a n D o o r n W.G., D e S t i g t e r H.C.M., D e W i t t e Y., B o e k e s t e i n A. Microorganisms at the cut surface and in xylem vessels of rose stems: a scanning electron microscope study. J. Appl. Bact., 1991, 70: 34-39. 36. T h o m a s P. Reemergence of covert bacteria Bacillus pumilus and Brevibacillus sp. in microbe-freed grape and watermelon stocks attributable to occasional autoclaving defying residual spores from previous cycles. Plant Cell Tiss. Org. Cult., 2006, 87: 155-165 (doi: 10.1007/s11240-006-9150-y). 37. T h o m a s P. Isolation of an ethanol-tolerant endospore-forming Gram-negative Brevibacillus sp. as a covert contaminant in grape tissue cultures. J. Appl. Microbiol., 2006, 101: 764-774 (doi: 10.1111/j.1365-2672.2006.02993.x). 38. L a u k k a n e n H., S o i n i H., K o n t u n e n - S o p p e l a S., H o h t o l a A., V i l j a n e n M. A mycobacterium isolated from tissue cultures of mature Pinus sylvestris interferes with growth of Scots pine seedlings. Tree Physiol., 2000, 20(13): 915-920. 39. P e n c e V.C., S a n d o v a l J.A. Controlling contamination during in vitro collection. In: In vitro collection techniques for germplasm conservation /V.C. Penke, J.A. Sandoval, V.M. Villalobos, F. Engelmann (eds.). IPGRI Technical Bulletin (Rome, Italy), 2002, 7: 30-40. 40. R o y A., S a h a P.K. Factors involved during in vitro culture of Calamus rotang. J. Trop. For. Sci., 1997, 10: 225-232. 41. S m i t h R.H., B u r r o w s J., K u r t e n K. Challenges associated with micropropagation of Zephyranthes and Hippeastrum sp. (Amaryllidaceae). In vitro Cell Dev. Biol. Plant., 1999, 35: 281-282. 42. B u c k l e y P.M., D e W i l d e Å.N., R e e d B.M. Characterization and identification of bacteria isolated from micropropagated mint plants. In vitro Cell Dev. Biol. Plant, 1995, 31: 58-64. 43. R e e d B.M., B u c k l e y P.M. Tissue Culture Contaminants Handbook. USDA-ARS, Corvallis, OR. 1999 (Lab manual). 44. S i n g h a S., B i s s o n n e t t e G.K., D o u b l e M.L. Methods for sterilizing instruments contaminated with Bacillus sp. from plant tissue cultures. Hort. Sci., 1987, 22: 659. 45. S t e a d D.E., E l p h i n s t o n e J.G., W e l l e r S., S m i t h N., H e n n e s s y J. Modern methods for characterizing, identification and detecting bacteria associated with plants. Acta Hort., 2000, 530: 45-57. 46. Îïðåäåëèòåëü áàêòåðèé Áåðäæè (ïåð. ñ àíãë.) /Ïîä ðåä. Äæ. Õîóëòà, Í. Êðèãà, Ï. Ñíèòà, Äæ. Ñòåéëè, Ñ. Óèëüÿìñà. Ò. 1. Ì., 1997. 47. http://www.arb-silva.de 48. G r e i z e n K., L o e f f e l h o l z M., P u r o h i t A., L e o n g D. PCR primers and probes for the 16S rRNA gene of most species of pathogenic bacteria, including bacteria found in cerebrospinal fluid. J. Clin. Microbiol., 1994, 32: 335-351. 49. W i l s o n K.H. Detection of culture-resistant bacterial pathogens by amplification and sequencing of ribosomal DNA. Clin. Infect. Dis., 1994, 18: 958-962 (doi: 10.1093/clinids/18.6.958). 50. G a r c i a - M a r t i n e z J., A c i n a s S.G., R o d r i g u e s - V a l e r e F. Use of the 16S-23S ribosomal genes spacer region in studies of prokaryotic diversity. J. Microbiol. Meth., 1999, 36: 55-64. 51. T h o m a s P., S o l y T.A. Endophytic bacteria associated with growing shoot tips of banana (Musa sp.) cv. Grand Naine and the affinity of endophytes to the host. Microb. Ecol., 2009, 58(4): 952-964 (doi: 10.1007/s00248-009-9559-z). 52. Ñ à ô ð î í î â à Â.È., × è æ å â ñ ê à ÿ Å.Ï., Á å ë è ì î â À.À., Ï à â ë î â à Å.À. Îïðåäåëåíèå òàêñîíîìè÷åñêîãî ïîëîæåíèÿ ìèêðîñèìáèîíòîâ êîïåå÷íèêà (Hedysarum) è àñòðà- 12 53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74. ãàëà (Astragalus) íà îñíîâå àíàëèçà ãåíîâ ðèáîñîìàëüíûõ ÐÍÊ. Ñåëüñêîõîçÿéñòâåííàÿ áèîëîãèÿ, 2011, 3: 61-64. http://www.ncbi.nlm.nih.gov/ Ï è í å â è ÷ À.Â. Ìèêðîáèîëîãèÿ. Áèîëîãèÿ ïðîêàðèîòîâ. Ò. 1. Ñïá, 2007. L e i f e r t C. Quality assurance systems for plant cell and tissue culture: The problem of latent persistence of bacterial pathogens and Agrobacterium-based transformation vector systems. Acta Hort., 2000, 530: 87-91. E w a l d D., Z a s p e l I., N a u j o k s G., B e h r e n d t U. Endogenous bacteria in tissue cultures of conifers — appearance and action. Acta Hort., 2000, 530: 137-143. T h o m a s P., P a n i c k e r B., J a n a k i r a m T., S a t h y a n a r a y a n a B.N. In vitro propagation of «Arka Ravi» chrysanthemum on growth regulator-free medium harboring endophytic bacteria. J. Hortic. Sci. Biotech., 2009, 84(6): 653-659. Î ñ ë å ä ê è í Þ.Ñ., Ë å â ÷ ó ê Ñ.Ñ., Î ã î ð î ä í è ê î â à Â.Ô., Ä ó í à å â à Ñ.Å., Ë ó ï û ø å â à Þ.Â., Î ð ë î â à Ñ.Þ., Ï à ç î â à Ç.Õ., Ò ð ó ñ ê è í î â Ý.Â., à à â ð è ë å í ê î Ò.À. Áàêòåðèàëüíûå èíôåêöèè â êóëüòóðå in vitro ðàñòåíèé. Ìåæä. íàó÷. êîíô. «Ìîëåêóëÿðíàÿ ãåíåòèêà, ãåíîìèêà è áèîòåõíîëîãèÿ». Ìèíñê, 2004: 173-174. Ä ó í à å â à Ñ.Å., Ï å í ä è í å í Ã.È., À í ò î í î â à Î.Þ., Ø â à ÷ ê î Í.À.,  î ë ê î â à Í.Í., à à â ð è ë å í ê î Ò.À. Ñîõðàíåíèå âåãåòàòèâíî ðàçìíîæàåìûõ êóëüòóð â in vitro è êðèîêîëëåêöèÿõ. Ìåòîä. óêàç. /Ïîä ðåä. Ò.À. Ãàâðèëåíêî. ÑÏá, 2011. C o o k e D.L., W a i t e s W.M., L e i f e r t C. Effects of Agrobacterium tumefaciens, Erwinia carotovora, Pseudomonas syringae and Xanthomonas campestris on plant tissue culture of Aster, Cheiranthus, Delphinium, Iris and Rosa: disease development in vivo as results of latent infection in vitro. J. Plant Dis. Protect., 1992, 99: 469-481. T h o m a s P., P r a b h a k a r a B.S., P i t c h a i m u t h u M. Cleansing the long-term micropropagated triploid watermelon cultures from covert bacteria and field testing the plants for clonal fidelity and fertility during the 7-10 year period in vitro. Plant Cell Tiss. Org. Cult., 2006, 85: 317-329 (doi: 10.1007/s11240-006-9083-5). M i s r a P., G u p t a N., T o p p o D.D., P a n d e y V., M i s h r a M.K., T u l i R. Establishment of long-term proliferating shoot cultures of elite Jatropha curcas L. by controlling endophytic bacterial contamination. Plant Cell Tiss. Org. Cult., 2010, 100: 189-197 (doi: 10.1007/s11240-009-9636-5). L e i f e r t C., W a i t e s W.M., C a m o t t a H. Lactobacillus plantarum: a deleterious contaminant of plant tissue cultures. J. Appl. Bact., 1989, 67: 363-370. D i a s A.C.F., C o s t a F.E.C., A n d r e o t e F.D., L a c a v a P.T., T e i x e i r a M.A., A s s u m p ç ã o L.C., A r a ú j o W.L., A z e v e d o J.L., M e l o I.S. Isolation of micro propagated strawberry endophytic bacteria and assessment of their potential for plant growth promotion. World J. Microbiol. Biotechnol., 2009, 25: 189-195 (doi: 10.1007/s11274-008-9878-0). Ï î ë ÿ ê î â À.Â., × è ê ð è ç î â à À.Ô., Ê à ë ÿ å â à Ì.À., Ç à õ à ð ÷ å í ê î Í.Ñ., Á à ë î õ è í à Í.Â., Á ó ð ü ÿ í î â ß.È. Òðàíñôîðìàöèÿ ðàñòåíèé ëüíà-äîëãóíöà. Ôèçèîëîãèÿ ðàñòåíèé, 1998, 45(4): 882-887. Ê à ë ÿ å â à Ì.À., Ç à õ à ð ÷ å í ê î Í.Ñ., Ä î ð î í è í à Í.Á., Ð ó ê à â ö î â à Å.Á., È â à í î â à Å.Ã., À ë å ê ñ å å â à Å.Å., Ò ð î ö å í ê î Þ.À., Á ó ð ü ÿ í î â ß.È. Ñòèìóëÿöèÿ ðîñòà è ìîðôîãåíåçà ðàñòåíèé in vitro àññîöèàòèâíûìè ìåòèëîòðîôíûìè áàêòåðèÿìè. Ôèçèîëîãèÿ ðàñòåíèé, 2001, 48(4): 596-599 (doi: 10.1023/A:1016715800238). Ê à ë ÿ å â à Ì.À., Ä î ð î í è í à Í.Á., È â à í î â à Å.Ã., Ò ð î ö å í ê î Þ.À., Á ó ð ü ÿ í î â ß.È. Ïðèìåíåíèå àýðîáíûõ ìåòèëîáàêòåðèé è ìåòàíîòðîôîâ äëÿ èíäóêöèè ìîðôîãåíåçà ïøåíèöû ìÿãêîé (Triticum aestivum L.) in vitro. Áèîòåõíîëîãèÿ, 2003, 2: 38-44. Ø è ð î ê è õ È.Ã., Ø ó ï ë å ö î â à Î.Í., Ø è ð î ê è õ À.À. Îöåíêà âëèÿíèÿ ìåòèëîòðîôíûõ áàêòåðèé íà ðàñòåíèÿ in vitro. Äîêëàäû Ðîññèéñêîé àêàäåìèè ñåëüñêîõîçÿéñòâåííûõ íàóê, 2007, 5: 23-25. M c F a l l - N g a i M. Unseen forces: the influence of bacteria on animal development. Devel. Biol., 2002, 242: 1-14 (doi: 10.1006/dbio.2001.0522). M u r t h y B.N.S., V e t t a k k o r u m a k a n k a v N.N., K r i s h n a R a j S., O d u m e r u J., S a x e n a P. Characterization of somatic embryogenesis in Pelargonium ½ hortorum mediated by a bacterium. Plant Cell Rep., 1999, 18: 607-613. L u n a C., C o l l a v i n o M., M r o g i n s k i L., S a n s b e r r o P. Identification and control of bacterial contaminants from Ilex dumosa nodal segments culture in a temporal immersion bioreactor system using 16S rDNA analysis. Plant Cell Tiss. Org. Cult., 2008, 95(1): 13-19. L a t a A.H., L i X.C., S i l v a B., M o r a e s R.M., H a l d a - A l i j a L. Identification of IAA-producing endophytic bacteria from micropropagated Echinacea plants using 16S rRNA sequencing. Plant Cell Tiss. Org. Cult., 2006, 85(3): 353-359 (doi: 10.1007/s11240-006-9087-1). T h o m a s P., K u m a r i S., S w a r n a G.K., G o w d a T.K.S. Papaya shoot tip associated endophytic bacteria isolated from in vitro cultures and host-endophyte interaction in vitro and in vivo. Can. J. Microbiol., 2007, 3(3): 380-390 (doi: 10.1139/WO6-141). I s e n e g e r D.A., T a y l o r P.W.J., M u l l i n s K., M c G r e g o r G.R., B a r l u s M., H o l c h i n s o o J.F. Molecular detection of a bacterial contaminant Bacillus pumilus in symptomless potato plant tissue cultures. Plant Cell Rep., 2003, 21(8): 814-820 (doi: 13 10.1007/s00299-003-0583-z ) . 75. T h o m a s P., K u m a r i S. Inconspicuous endophytic bacteria mimicking latex exudates in shoottip cultures of papaya. Sci. Hort., 2010, 124(4-1): 469-474 (doi: 10.1016/j.scienta.2010.02.013). 76. L i u T.-H., H s u N.-W., W u R.-Y. Control of leaf-tip necrosis of micropropagated ornamental statice by elimination of endophytic bacteria. In vitro Cell. Devel. Biol. Plant, 2005, 41(4): 546549 (doi: 10.1079/IVP2005673). 77. A b r e u - T a r a z i M.F., N a v a r r e t e A.A., A n d r e o t e F.D., A l m e i d a C.V., T s a i S.M., A l m e i d a M. Endophytic bacteria in long-term in vitro cultivated «axenic» pineapple microplants revealed by PCR–DGGE. J. Microbiol. Biotechnol., 2010, 26(3): 555-560 (doi: 10.1007/s11274-009-0191-3). 78. K u l k a r n i A.A., K e l k a r S.M., W a t v e M.G., K r i s h n a m u r t h y K.V. Characterization and control of endophytic bacterial contaminants in in vitro cultures of Piper spp., Taxus baccata subsp. wallichiana and Withania somnifera. Can. J. Microbiol., 2007, 53: 63-74 (doi: 10.1139/WO6-106). 79. F a l k i n e r F.R. Antibiotics and antibiotic resistance associated witch plants, fruits and vegetables. Acta Hort., 2000, 530: 83-86. 80. S e c k i n g e r G.R., T o r r e s K.C. Physical and chemical means of controlling contamination in plant tissue culture. Proc. World Congress on in vitro Biol. S. Francisco, California, USA, 2004 (http://www.phytotechlab.com/pdf/SIVBMay2004.pdf). 1ÃÍÓ Âñåðîññèéñêèé ÍÈÈ ðàñòåíèåâîäñòâà èì. Í.È. Âàâèëîâà Ðîññåëüõîçàêàäåìèè, Ïîñòóïèëà â ðåäàêöèþ 8 îêòÿáðÿ 2013 ãîäà 190000 Ðîññèÿ, ã. Ñàíêò-Ïåòåðáóðã, óë. Áîëüøàÿ Ìîðñêàÿ, 42, e-mail: dunaevase@mail.ru; 2ÃÍÓ Âñåðîññèéñêèé ÍÈÈ ñåëüñêîõîçÿéñòâåííîé ìèêðîáèîëîãèè Ðîññåëüõîçàêàäåìèè, 196608 Ðîññèÿ, ã. Ñàíêò-Ïåòåðáóðã—Ïóøêèí, ø. Ïîäáåëüñêîãî, 3 Sel’skokhozyaistvennaya biologiya [Agricultural Biology], 2015, V. 50, ¹ 1, pp. 3-15 BACTERIAL MICROORGANISMS ASSOCIATED WITH THE PLANT TISSUE CULTURE: IDENTIFICATION AND POSSIBLE ROLE (review) S.E. Dunaeva1, Yu.S. Osledkin2 1N.I. Vavilov All-Russian Institute of Plant Industry, Russian Academy of Agricultural Sciences, 42, ul. Bol’shaya Morskaya, St. Petersburg, 190000 Russia, e-mail dunaevase@mail.ru; 2All-Russian Research Institute of Agricultural Microbiology, Russian Academy of Agricultural Sciences, 3, sh. Podbel’skogo, St. Petersburg, 196608 Russia Received October, 8, 2013 doi: 10.15389/agrobiology.2015.1.3eng Abstract Effective sterilization of plant explants and antiseptics rules compliance do not exclude the presence of so-called covert (endophytic) bacteria in in vitro cultures. But the role of these bacteria in tissues cultures has been not enough studied whereas it was related to the explants regeneration capacity and the possibility of animal and human cells transformation under in vitro cultivation. Bacterial strains pathogenic to humans can be stably maintained in cultivated tissues and ex vitro plants. The broadening of bacterial environments creates ecological and genetic risks leading to necessity of careful monitoring of endophytic communities in plants used as raw food and at use of in vitro technologies in practical plant growing and food production. Identification of bacterial microorganisms colonizing in vitro plant cultures allows studying the bacteria effect on the host, realizing special chemotherapy and developing the microorganisms’ databases. Two methods of identification are the most widespread: more available traditional one that does not allow detecting non-cultured forms (its base is the use of cultural and morphological characteristics as well as chemical and biochemical reactions) and molecular-genetic one. At the second approach different 16S-rRNA sequences are studied using metagenomic DNA and appropriate specific primers; these sequences have conserved sites identical for all prokaryotes and variable ones suitable for species specific regions identification. Internal transcribed spacers (ITS) are being mainly used to distinguish the microorganisms at the species level and even at strains one. Taxonomy of in vitro cultures’ bacterial endophytes indicates to their diversity and absence of specific composition as for cultures of plants belonging to different taxa as for different plant organs explants. Among identified endophytic bacteria potentially useful for intact plants Streptomycete, Pantoea agglomerans and others were found as well as those pathogenic for humans, e.g. Ralstonia mannitolytica, Staphylococcus epidermidis, Corynebacterium amycolatum, Bacillus neonatiensis, Salmonella and Nocaridia spp. At in vitro plant cultivation durable symptomless bacterial presence is caused on the one hand by bacterial growth repression with factors 14 accompanying plant explants cultivation (PH, temperature below bacterial optimum, activation of the defense mechanisms), and on the other hand by simultaneous bacteria support due to exudates secreted by plant explants. The rapid bacterial cells proliferation can begin even at small changes in initial conditions, at increase in plant exudates concentrations and per se in consequence of in vitro cultivation as a stress at the absence of whole organism regulatory role. As the number of subcultivations increases a portion of plant cultures with latent bacterial contamination increases too; no-cultured endophytes have been reported to acquire the status of cultured ones. Covert bacterial contamination could depress regeneration, micropropagation, cause death of in vitro cultivated objects, restrict the protocols repeatability and concern induction of epigenetic somaclonal variability. For instance Acinetobacter and Lactobacillus plantarum filtrates extracted from degrading calluses strongly reduced shoot regeneration at inoculation in explants or addition into a medium; bacteria Mycobacterium obuense and M. aichiense repressed seeds development in in vitro cultures. The article accents the problem of gnotobiological plant cultures (specifically in in vitro collections of plants genetic banks) development caused by difficulties in identification and elimination of bacterial microorganisms. Êeywords: plant tissue culture, bacterial microorganisms, antibacterial therapy. Íàó÷íûå ñîáðàíèÿ VIII ÌÎÑÊÎÂÑÊÈÉ ÌÅÆÄÓÍÀÐÎÄÍÛÉ ÊÎÍÃÐÅÑÑ «ÁÈÎÒÅÕÍÎËÎÃÈß: ÑÎÑÒÎßÍÈÅ È ÏÅÐÑÏÅÊÒÈÂÛ ÐÀÇÂÈÒÈß» XIII ÌÅÆÄÓÍÀÐÎÄÍÀß ÑÏÅÖÈÀËÈÇÈÐÎÂÀÍÍÀß ÂÛÑÒÀÂÊÀ «ÌÈÐ ÁÈÎÒÅÕÍÎËÎÃÈÈ-2015» (17-20 ìàðòà 2015 ãîä, ã. Ìîñêâà, Íîâûé Àðáàò, 36/9) Îðãàíèçàòîðû êîíãðåññà è âûñòàâêè: Ìèíèñòåðñòâî îáðàçîâàíèÿ è íàóêè Ðîññèéñêîé Ôåäåðàöèè, Ìèíèñòåðñòâî ïðîìûøëåííîñòè è òîðãîâëè Ðîññèéñêîé Ôåäåðàöèè, Ôåäåðàëüíîå àãåíòñòâî íàó÷íûõ îðãàíèçàöèé, Ðîññèéñêàÿ àêàäåìèÿ íàóê, Ðîññèéñêèé ôîíä ôóíäàìåíòàëüíûõ èññëåäîâàíèé, Ðîññèéñêèé ñîþç õèìèêîâ, ÇÀÎ «Ýêñïî-áèîõèì-òåõíîëîãèè». Îñíîâíûå òåìàòè÷åñêèå íàïðàâëåíèÿ: Ôóíäàìåíòàëüíûå èññëåäîâàíèÿ è áèîòåõíîëîãèÿ Áèîòåõíîëîãèÿ è ìåäèöèíà Áèîìåäèöèíñêèå ñåíñîðû è òåõíîëîãèè Èììóííàÿ áèîòåõíîëîãèÿ Ñåëüñêîõîçÿéñòâåííàÿ áèîòåõíîëîãèÿ: • Áèîòåõíîëîãèÿ â ñåëåêöèè è ðàñòåíèåâîäñòâå • Ðåãóëÿöèÿ ýêñïðåññèè ãåíîâ è ïðîäóêòèâíîñòü ñåëüñêîõîçÿéñòâåííûõ îðãàíèçìîâ • Áèîòåõíîëîãèÿ ãåíåòè÷åñêè èíòåãðèðîâàííûõ íàäîðãàíèçìåííûõ ñèñòåì • Ìèêðîáíî-ðàñòèòåëüíûå ñèñòåìû è èõ áèîòåõíîëîãèÿ • Ìîëåêóëÿðíàÿ äèàãíîñòèêà áîëåçíåé ðàñòåíèé è æèâîòíûõ • Áèîòåõíîëîãèÿ â âîñïðîèçâîäñòâå öåííûõ ïîðîä ðûá Ñîâðåìåííûå ïðîáëåìû æèâîòíîâîäñòâà è áèîòåõíîëîãèè èõ ðåøåíèÿ (êðóãëûé ñòîë) Ëåñíàÿ áèîòåõíîëîãèÿ: îò èññëåäîâàíèé ê èííîâàöèÿì (êðóãëûé ñòîë) Áèîòåõíîëîãèÿ è ïðîìûøëåííîñòü Áèîìàòåðèàëû è èõ ðîëü â ñîâðåìåííûõ áèîòåõíîëîãèè è ìåäèöèíå Áèîòåõíîëîãèÿ ïèùè. Ïðîäóêòû çäîðîâîãî ïèòàíèÿ Áèîêàòàëèç è áèîêàòàëèòè÷åñêèå òåõíîëîãèè Áèîòåõíîëîãèÿ â ðåøåíèè ïðîáëåì îõðàíû îêðóæàþùåé ñðåäû Áèîãåîòåõíîëîãèÿ Áèîýíåðãåòèêà — âàæíûé ôàêòîð â ðåøåíèè ýêîëîãè÷åñêèõ è ýêîíîìè÷åñêèõ ïðîáëåì Áèîèíôîðìàòèêà Òåìàòèêà âûñòàâêè: Ïðîöåññû, àïïàðàòû, ëàáîðàòîðíî-àíàëèòè÷åñêîå îáîðóäîâàíèå, äèàãíîñòè÷åñêèå íàáîðû, áèî÷èïû è áèîñåíñîðû äëÿ áèîòåõíîëîãè÷åñêèõ ïðîèçâîäñòâ è ëàáîðàòîðíûõ èññëåäîâàíèé. Êîìïüþòåðíûå òåõíîëîãèè. Âåñü ñïåêòð áèîïðîäóêòîâ äëÿ ôàðìàöåâòè÷åñêîé è ïèùåâîé ïðîìûøëåííîñòåé, àãðîïðîìûøëåííîãî êîìïëåêñà, âåòåðèíàðèè, ãåîëîãèè, ïðîìûøëåííûõ ïðîèçâîäñòâ, à òàêæå áèîàãåíòû äëÿ îõðàíû è âîññòàíîâëåíèÿ îêðóæàþùåé ñðåäû. Áèîëîãè÷åñêè àêòèâíûå äîáàâêè. Òåñò-ñèñòåìû äëÿ îïðåäåëåíèÿ àëêîãîëÿ è íàðêîòè÷åñêèõ âåùåñòâ. Áèîêàòàëèç è áèîêàòàëèòè÷åñêèå òåõíîëîãèè. Ïèòàòåëüíûå ñðåäû. Áèîïðåïàðàòû äëÿ ìåäèöèíû è êîñìåòîëîãèè, à òàêæå ãîòîâûå ïðîäóêòû íà èõ îñíîâå. Àëüòåðíàòèâíûå èñòî÷íèêè ýíåðãèè, íàíîìîëåêóëÿðíûå ïðåîáðàçîâàòåëè ýíåðãèè. Ïðîìûøëåííàÿ è ëàáîðàòîðíàÿ áåçîïàñíîñòü. Êîíòàêòû è èíôîðìàöèÿ: http://www.mosbiotechworld.ru, e-mail: aleshnikova@mosbiotechworld.ru, atv@biomos.ru, ser@biomos.ru 15