X Δ log X = ¡Ö GrowthX X GrowthGDP(t ) = GrowthA(t ) + 1 æ2 + GrowthK (t ) + (ç – α)GrowthL(t ). 3 è3 F (t ) = [ A(t ) + K (t )α L(t )1– α ] ρ PE ρρ–1 – 1ρ [ 1 – ( ) ] , Bt 1 3 2 è3 + Δ log K (t ) + (æç – α)Δ log L(t ) , ∂ log GDP(t ) A(t ) + = ∂t A(t ) K (t ) L(t ) . +α + (1 – α) K (t ) L(t ) Δ log GDP(t ) = Δ log A(t ) + æ ç è æ ç è GrowthA(t ) = GrowthGDP (t ) – – (αGrowthK (t ) + (1 – α)GrowthL (t )). ln L(t ) = ln L(0) + + nt , L l n L(t ) = = n, L invi (t ) = αi + β i savi(t ) + u i (t ), sav i (t ) = αi + β1 GDPpi .c. (t –1) GDPpUSA .c. (t –1) + i æ GDPp.c. (t –1) 2 + β2 (ç ) + èGDPUSA (t –1) p.c. æ ç è + β3Growthip.c. (t – 1) + + ∑kK=1 φk d ki (t ) + ∑kK=1 ηk d ki (t ) × × Growthip.c. (t – 1) + ε i (t ), At (t ) = 0,0133 – At (t – 1) GDPp.c.t. (t – 1) – βi ln GDPp.c.US (t – 1) + 0,015 – 800 (– CCI i )1,5 βi = { , GDPp.c.US (t – 1) GDPp.c.t. (t – 1) – βi ln ln Ai (t ) = 0,0133 –