. 01.04.08 – : , . – 2013 -2- . 5 1. 16 1.1. 16 1.2. 32 1.3. , 65 1.4. 76 2. 80 2.1. 80 2.2. 88 2.3. 94 2.4. . 113 2.5. 119 2.6. 135 -3- . 3. 137 3.1. 137 3.2. 145 3.3. 158 3.4. 182 3.5. 192 3.6. 213 4. 217 4.1. 217 4.2. 224 4.3. 252 4.4. 5. 265 , 266 5.1. (FRC) 267 5.2. 309 5.3. 321 -4- . 5.4. 325 5.5. 342 6. 344 6.1. 344 D–3He- 6.2. 357 6.3. 376 D–3He- 6.4. 384 6.5. p–11B 6.6. 387 398 400 403 -5- ( ) - , . (D) (T) - . ; . . D–T, [1]. - ITER (International Thermonuclear Experimental Reactor) [2]. – , - Q = 10, . D–T- . ITER ITER ) [3] D–T- . – - . , NIF (National Ignition Facility, ), , . D–T2050 ., [1]. , -6. – ITER Q = 10. - – . . , D–T- . [4, 5]. Q = 0.1–1. - ( ). Q = 10 . , 3 He ( -3) [6]. -3 ( ), , . -3 - . D–3HeD–3He- . D–T- . D–3He- - -7. , , - , - . D–D- , - D–D- – -3. D–D- D–T- , - D–3He- . , D–D- , . D–D- . . -11 (11B). (p) -11 . - , p–11B, , - . , . D–3He, D–D p–11B, , , - , , . , - ~1( – -8). ~ 0.1, - , ~ 1. , . , . . ~ 1, - , , . , D–3He- : Q = 10–20, - p–11B. Q = 0.1 – 0.5 , , - . ( - ) . , . , -9, . - , . , 0.1 D–3He- , . p–11B (~ 100 ), D–T(~ 10 ). , . : . , . . . , , . , , , , , . , ( . . , . ( ) . . , ( ( ( , ), ), . ), ), Tri Alpha Energy ), - . , . , T ~ 10 ~ 0.1, . - 10 , : ; ; - ; ( ) . , - . : 1. , . 2. , , . 2. ( ) , . 3. , , ; . - 11 4. . 5. . , - , . ( ), - . . , - , . . , . - . . , .) ( . , , - - 12 . - . , , - . ( ) , . . - , . - . . - , - . . (FRC), – . - . - , . : , D–3He, FRC D–T, D–3He- - , D–3He- - 13 p–11B. , - , . 1. , , , . 2. , , . 3. ( ) - 0.8. (FRC), - . 4. (FRC) ( ) , - . 5. ( , , - - 14 , ) , : D–3He- FRC , (Q = 10–20) ( FRC (Q = 0.1–0.5). p–11B 6. Q ) 1. , , Q 5. , , , - , ~ 1. , , . , . , - (FRC) - . - 15 . , (50–250 ) , (0.5 , - ). - , , , , - . – . - 16 1. 1.1. , ( [8], [9]). ., - , [7], 1 , - . . 1.1. v , , v – – , - . , . v - 1 ( - [7], p– 11 B, [10]). . 1.2 v W, W– , . , - . - . , , D–T- – , - 17 . , ITER [11] , , 5 - . 1. , - v , 3 Ti=15 100 300 1 D+T n (14.1) +4He (3.5) 2.6 10-22 8.3 10-22 5.0 10-22 2a D+D n (2.45) +3He (0.817) 1.5 10-24 0.2 10-22 0.73 10-22 2b D+D p (3.02) +T (1.01) 1.4 10-24 0.2 10-22 0.59 10-22 3 D+3He p (14.68) +4He (3.67) 2.1 10-25 1.7 10-22 2.57 10-22 4a D+6Li n (2.958) +7Be (0.423) 0.9 10-23 0.48 10-22 4b D+6Li n (~0.66) +3He+4He+1.794 0.6 10-23 0.37 10-22 4c D+6Li p (4.397) +7Li (0.628) 1.2 10-23 0.72 10-22 4d D+6Li p+T+4He+2.257 1.4 10-23 0.88 10-22 4e D+6Li 0.39 10-23 0.17 10-22 5 D+7Be p+4He+4He+16.766 1.2 10-23 2.1 10-22 6 p+6Li 1.7 10-23 0.79 10-22 7a p+9Be D+4He+4He+0.651 7.2 10-23 2.2 10-22 7b p+9Be 6.3 10-23 1.9 10-22 8 p+11B 34He+8.681 6.1 10-23 3.4 10-22 9 3 ~0.5 10-24 ~10-23 4 3 He+4He+22.371 He (2.3) +4He (1.722) 4 He (1.277) +6Li (0.851) He+3He p+p+4He+12.86 - 18 - 10 , 1 10–1 1 10–2 10–3 10–4 2 3 4 10–5 10 102 103 104 E, . 1.1. : D–T (1), D–D (2; , D–3He (3) n 3 He; – , p–11B (4, ( – p ). E – T, D, D p). T), - – - - 19 - 102 3 101 D–T , D–3He 100 p–11B D–D 10-1 3 He–3He 10-2 10-3 10-4 100 . 1.2. 101 , 102 103 1 1020 –3 3 - - 20 , : n + 6Li T + 4He + 4.8 ; n + 7Li T + 4He + n – 2.47 . (1.1) -3 3 He + e– + 0.018 T 12.3 (1.2) . , , , , - p–11B, , 3 He–3He. p–11B , , . - . D–D- ( , D–D- ) . - , ( , , . [8, 9, 12]). D–3He- - D–T- . ( 3 D–TD–3He, , 1), . , - 21 D–D- . , . - D–D- , D [12]. 3 He, 5–7 % D–T- , 80 % , D–3He- . D–3He- 30–40 D–3He. - . ( ) D–3He- . 80XX , [13–15]. 3 He . -3 1000 D–3He- [16]. . -3, 15 % [12]. D–3He-3 D–D- . , , D–3He- , D–T- , D–3He- [17] . - 22 D–3He- D–D- ITER - , - . , , .) - , . , D–3He- . 2 0p , 2 (1.3) B , B 2 /(2 p– – 0) – ,B ( ), 0 – . , - , 2 Be – 0p Be2 1, (1.4) ( , - ). , - - 23 . * ( ), . - B 20 . , B 5 . (D–3He, D–D, p–11B 1. .) * , . , >1 , << 1 . 0.1 ( ) [18]. ~1 23]. [19– , ( B A = 1.1 – 1.6), 5 - . B 2.5 , 16 ). - - ( - , D–3He- [24]. , D–3He– D–D- 50–70 ), 10–20 20 50 p–11B ( D–T- . , - 24 . - D–3He. , - ~ 0.1 0.5. - 90–95 %. - . [25, 26]. - , , . , ( ) . - , D–3He- p–11B, - . . , ( ), - . - 25 . , , , . - . 1.3–1.6. (FRC, field reversed configuration) [27–29], . 1.3. FRC - . FRC , : , - ; . , = 0. B FRC . FRC , , . * FRC - > 1. , FRC [27]. =1( * ) FRC - , 0.7– 0.9 [27–29]. FRC , [14, 30]. - D–3He- - 26 - . 1.3. ( ) ( ) FRC: 1 – ,2– ,3– (B 0), 4 – ,5– ,6– . 1.4. : 1– ,2– - - 27 FRC . , FRC. . 1.4 - ( ) . - , – - . , , , , , , . - . , . [31, 32]. : . . ) [33, 34]. , ( Q 10), . D–T- 1000 – [33, 34], . . - 28 , [35]. ( ) Q 1. Q , . Q << 1. ( ) , ( ). - , - , - , . . [36] ( ). Q tandem mirror - 10 [37], . ( 0.5–1, . 1.4) , Q , - [38]. , , – , ( ), ) [39], EPSILON [40] , - ( . [41, 42]. - . , - - 29 , - , . - , . - . , , - , , . ( ), . 1.5. , - . , - , z. , . , - . , - , . , – . ( ). , [43]. [44]. . . , - - 30 - . 1.5. :1– ,2– . 1.6. : 1 – ,2– - 31 . 1.6. . . , , . - , . . [45]. [46], , , , . , [47, 48]. , - . . , . - [49, 50] – . , [51] – , FRC. . , , - [52] – - [53] . - 32 1.2. 1.2.1. , . , , , - , , - . , , . ( nj j t 3 ni k B Ti t 2 3 n e k B Te t 2 kB – Ji Je [n j ] S Pn ) hi Pext (1.5) Pi e , Pn ) he Pext Pi Jj – j e Pb , j (j = i, e); [nj]S j (1.6) Ps . (1.7) i ; nj, Tj, ; - [n j ] L , i ( Pfus e ( Pfus ) – , ; Pfus – , ; Pn – , [nj]L – - , ; Pext – - 33 ; hi he – , , ; Pi–e – , - ; Pb – ; Ps – . (1.6) , . j, ) - [54, 55]. , (1.7) (1.5)– . 1.7. Pn , Pfus (Pfus)i Pext (Pfus)e Pch Pie Pb Ps . 1.7. - 34 Jj j - , - [54]. , , - . E. p p - E, - . . p , E - . E, p . nj, Tj, . i ( P fus e ( P fus Pn )dV Pn )dV (1.6), (1.7) hi Pext dV he Pext dV 1 Pi e dV E i 3 n k T dV 2 i B i - , (1.8) Pi e dV i Pb dV Ps dV , 1 E 3 n k T dV 2 e B e . (1.9) - - 35 - Pfus dV Q 0, Q Pext . Pext dV (1.10) . Q = 10–20. E, Q. Pfus Rij ni n j v k Wk , (1.11) i, j, k i, j – i ; Rij ;k– 1/ 2 j , Rij i v j; ; Wk – k – 1 - , . Pn, , (1.11), Wk . , - , . , i , [54] Pi ie 3 2 2 0 mi me Z i2 e 4 ne ie e k BTe me 3 n k (T 2 i B i Te ) , (1.12) ie 3/ 2 – - - 36 , mi – 0 – ,e– , me – , , Zi – , ie – - . Te ~ Ti [54] –3 , Te ie 24 ln( n1e / 2Te 1 ) , ne - . 1.2.2. , , . , , , . , D–3He- , 50 % - . . - . Pb P ei P ee . (1.13) - 37 - P ei d d ne ni i d ei , v ei vf (p)d 3 pd ei ne ni i , – - , f(p) – , ei max ( p) 0 d ei d d – ) max (1.14) 0 – p– ( p )vf ( p )4 p 2 dp , p 2c 2 ( me c 2 ) 2 me – p me c 2 – , , ,c– . [56] f ( p) exp( 4 / ) (me c ) 3 K 2 (1 / ) , (1.15) 1 / 1 ( v / c) 2 – mec2 = 511 k B Te /(me c 2 ) – ; , ; K2(…) – d . ei ( ) [57–59], ei , - < 1 % - : ei Cb c 1 Z i2 4 ln( 2 ) 1 3 ( 20 4 ln 2) exp 3 0.408( 1) , (1.16) - 38 - re2 me c 3 , Cb – , re – . (1.16) , ei NR 16 C c 1Z 2 , i 3 b >> 1 4Cb c 1 Z i2 ln( 2 ) ei ER ei 1 1 3 ( . . 1.8). c/(CbZeff2) 100 90 ----––––– –––– 80 70 60 50 40 30 20 10 0 1 2 3 4 5 6 7 8 . 1.8. 9 10 : – , (1.16), – – - - 39 Pei, (1.16), - , P 2 Cb ne2 Z eff ei K 2 (1 / ) 4 ln( 2 ) 1 3 ( 20 4 ln 2) exp 3 0.408( 1 exp( 2 Z eff 1) Z i2 ni / )( 2 (1.17) ; Pei – Z i ni – i P ei , 1)d i , - . Te < 10 Te ~ 1 . [60] B ei PNR 32 3 2C 2 2 b ne Z eff P ei 1) 2 (ln 2 ei PNR 3 Z eff 2 Z eff 2 , – [61], 3 , Z eff Z i3 ni i B Te = 1 ~ 0.1 , Te , . ~ 50 B i D–3He- ~ 0.2 . Z i ni . - ( Te < 10 - D–3He- Te ) , . , B Te 0, [62] - 40 - g ei ei PNR / PKramers , ei PKramers – . - Te << 10 g = 1; Te >> 10 g 2 3/ 1.1 , . Te (1–10 ) - gElwert [62], 1.5 . - B 3 Z eff B 2 Z eff 0.39 1 exp( 0.008 / ) 0.49 exp( 505 ) . (1.18) . 1.9. 1.6 g 1.5 2 1.4 ––––– – - – - Elwert - - - - - Gould 3 1 1.3 1.2 1.1 1 1 10 100 103 104 105 Te, . 1.9. , B: 2–g gElwert 1– (1.18), Te 0; 3 – g [60] 1 Te 0; - 41 - d ee d ee u (p1 , p 2 ) f (p1 ) f (p 2 )d 3 p1d 3 p 2 d , d 1 2 ne 2 P ee – , u(p1,p2) – , 1 , - 2 - 1/2 . (1.19) d [63] ee PNR 4C F (1.19) 1/ 2 , , Cb ne2 ee ei PNR / PNR ee 3 2 3/ 2 CF = (5/9)(44–3 2) , Z eff2 [61, 64] 1. 8. , Zeff2 ~ 2 Te < 100 - , . , , . [64], , Te = 10 20 , - , 5 , 4% . d ee [65], - [66] , P ee [67] [66], 32Cb ne2 K 2 (1 / ) 2 3 %. K2 1 2x - 1 4 x2 1 x 3 2 (3 3 x 2 ) ln( x x2 1) - 42 - ( x 2 1) 2 xdx . (1.20) , (1.17) (1.20) , Te > 1 . ( >> 1) , ei PER : 2 12Cb ne2 Z eff ln( 2 ) ee PER 24C b ne2 ln( 2 ) . Te, 5 4 CE ( 3 2 ( CE . [68]), ., , [61]) CE = 0.5772... – - . 1.10, , , , - . , >2 >1 . ( % P ei Te > 100 32 3 2C 3% Te < 100 ) [69, 70] 2 2 b ne Z eff 0.68 0.32 exp( 4.4 ) 2.07 P ee 4C F 5 1/ 2 Cb ne2 (1 0.64 B( ) , 2 ; (1.21) 3/ 2 6.6 2 22.6 3 33.8 4 24.7 5 7.1 6 ), 1. (1.22) - 43 - 100 Pei/(Zeff2Cbne2) Pee/(Cbne2) 2 (ee) 1 (ei) 10 ER NR 1 0.1 10 100 1000 Te, . 1.10. (1) (2) . , – – (NR) (1.21) (ER) B (1.18). . 1.11 D–3He- . , . Te < 100 , (1.21) (1.22) , , , [37, 71]. - 44 - Pei/(Zeff2Cbne2) Pee/(Cbne2) 5 4 ----–––– 1– 3 2 1 + . 2 – Dawson 1 2 2 1 0 0 20 . 1.11. 40 60 Te, 80 ( ) 100 ) Te 100 ; ( . – – [60]. 1 – (1.21) (1.22), 2 – [17, 72] - 45 , (1.21), (1.22), (1.17), (1.20) [37, 71] . - . - P ei [8, 60], 2 8.5Cb n e2 Z eff (1 0.8 1.87 2 ). - [60] , - ( - . 1.11). [72] ( , [17]). [73] - . - , P ei 2 8.5Cb ne2 Z eff (1 2 ) P ee 17C b ne2 D–3He, D–3He- (1 2 ) 1 1 /(1 Te 50–80 ). , - 10–15 %. - , . Z (Al, Fe, Mo, W). . - 46 , - [74, 75]. - D–3He- Te = 50–70 [12]: Be4+ – 2–3 %, B5+ – 1–2 %, O8+ – 0.6–0.8 %. , . , Ps 0 0 32 2 re me c 3 ne2 3 2 k B Te B2 2 0 ne k B Te me c , B – B0 1 2 33.5C s ne2 2 , (1.23) *e – , B0 – , 2 – 0p B02 (1.24) p , Cs re2 me c 3 , e 2 0 ne k B Te ( / B2 2 0 ne k B Te ) / B02 /(1 - ). , . - (ne = const, Te = const) - 47 - Pstot – Ps dV Ps 0 V , (1.25) , ;V– , . Te = 5–100 , , Tr a 2 p /(c ce ) ; 60 3/ 2 . 1/ 2 1 Rw 1 ; ce (1.26) ( p , – – - ; Rw – ; 2a R 2 ( Pstot [76, 77] . a– ); - 0.414 10 10 – = 0); R – ne Te2.5 B02.5 (1 )1.25 a , 1/ 2 . 1 Rw 1 V, (1.27) . - , [78] rel 1 2.5 1.5 , 1 1/ (1.28) - 48 (Te = 100–1000 ) - [78] rel /[1 Tam 3/ 2 320( / 1 Rw ) (511 ) ], (1.29) 0.39 10 /(511 ) . , ). , , - ( ) [79]. . , - , [79] - [82, 83] , ITER, . , , [80, 81]. , , , - . ( ) - [82] Pstot 0.414 10 10 n e,eff (Te,eff ) 2.5 B02.5 1 R w a eff 1 2.5 Te,eff 511 V. (1.30) - 49 , , B0 – ( a 2 ne (r )rdr , Te, eff a ne, eff 0 ). : a 1 Te (r )dr , aeff a a k, a– ,k– 0 . (1.30) - < 25 % [83]. (1.27) , (1.30) - , (1.30) . < 100 (1.28). - (1.30) Te (1.30) , - , - . , , (1.30), , - [80, 81]. Ps / Ps 0 . 1.12 ne Te. [83], Ps , . , . - - 50 Ps/Ps0 10 –––– ––– + . – - – - Tamor, Te < 100 - - - - Tamor, Te = 100–1000 –--– . 1 0.1 10–2 10–3 10 100 . 1.12. 1000 Te, a = 2 , Rw = 0.7, B0 = 7 ) ––––– Tr, –––– Te < 100 ( = 0.5 ( Tr rel, , = 0.1 ( - ): –-–-– [78], - - - - (1.29)) [78], – - - – - - – - - – Te = 100–1000 [82] - 51 - 0.2 Tr rel 0.18 1 – Te = Ti = 30 2 – 50 3 – 70 4 – 90 0.16 0.14 0.12 a = 2 , Rw = 0.7, Bext = 7 0.1 0.08 4 0.06 3 0.04 0.02 0 0 1 2 0.2 0.4 0.6 0.8 1 . 1.13. a = 2 , Rw = 0.7, B0 = 7 (3), 90 , Te = Ti = 30 , - , , . , - [84]. . (1.30) - ne,eff, Te,eff (1.30) B, . Ps , , Te (2), 70 (4) . , (1), 50 K s ne (Te B0 1 ) 2.5 1 2.5 aeff. ne, Te , 511 - 52 - Pstot KS Ps dV . , Rw 0.9–0.95. . ( ), , , , - , Rw = 0.7–0.8. Rw 0.8–0.85. - ~ 0.1, , Rw = 0.9 , . 0.4–0.6 ( . . 1.13). D–3He- , ~ 1. 1.2.3. – . , , , . , , - , . [54]. - - 53 , [54, 55, 85]. - . , , , . - , , , . [86, 87] - [55, 85]. , , . . . >1 [88]. , - , . , , . , , (first orbit losses) - - 54 . . . . - . k j dE k 1 n j E k dt C j 2 v 3 [54, 89] Z k Z j e2 2 kj nj – v erf (u j ) u j 4 mk m j 0 uj erf (u j ) , (1.31) ; Ek – 2 Ek / mk , Zk Zj – ; mk ; mj – ; m j v 2 /( 2k BT j ) , erf(…) – ; uj kj – - . [88–90] dE k 1 n j E k dt kj – N kj v j E kj Ek ( , , (1.32) ); ; E kj / E k – E kj – . (p, D, T, 3He, 4He) [88] . -3 [91]. - 55 - dE k 1 n j E k dx eff . j Ek >> kBTi ( ) , . Te–3/2. D 3 He . 1.14. 1–10 M 0.2–2 [88]. (ZkZj)2, , . , 3 , 4 , He . . 1.15 D–T0.2–2 . D–3He- ~ 50 ( ) 1–10 ~1 ( - . . D–T- . 1.1). ~1 <1M . (~ 5 %), D–D- ~ 1 , . , D–D- 70 % [12]. D–3He, - - 56 - – (dE/dt)j/(Enj) 1 (Te = 25 ) 10–20 1 (50 ) 1 (100 3 ) 10–21 3 2 2 10–22 1 10 E, – (dE/dx)j/(Enj) 10 1 (Te = 25 ) 1 (50 ) 3 1 1 (100 ) 3 2 0.1 0.1 1 . 1.14. E, 2 10 ( ) (- - - - -), – (–––––) ( ( ( ) (1.32) -3 (– - – - –): 1, 2 (1.31)), 3 – [91]) - 57 - D–T/ s.d. 0.08 100 0.07 0.06 50 0.05 0.04 0.03 T = 25 0.02 0.01 0.00 0.0 0.5 . 1.15. 1.0 1.5 E, 2.0 D–T- - Ti = Te = T D–3He150–300 14- - , . - , [92]. , - , 95], [93– . ~ 1 %, - - 58 , , - . D–3HeD–3He, D–D- . . , , - D–3He- . , , , [54]. , v0 , vTi v0 vTe . ~ vTi , vTi . - v vTe - [55, 96]. - . , , , , . - , . , [97]. - , f 0 ( v) (dn / dt ) – (dn / dt ) s exp 4 (v 3 v c3 ) v0 s ( v) v 3 v , v2 v c3 dv , (1.33) - 59 - ; vc i me 3 4 e ne i s 12 2 2 Z i2 ni mi 13 m me 2k B Te me 2 0 k B Te 3 2 eZ 2 4 e ne – ; 12 – ( - ); [ z ] i Z i2 ni m ( ne mi - i); m – ; (v) – ; mi – - , . s vc , . , - 1 dE k / dt Nj Ek j . s vc s1 v c1 , - : 1 s 1 s1 s Ek j dE k / dt Nj , (1.34) . (1.35) 1 v c31 v c3 1 s Ek j dE k / dt Nj . [97], , [98]. - 60 - 1.2.4. , . - . . - v v Tj (| v j jk v Tk v k |) | v j v k | f j ( v j ) f k ( v k )d 3 v j d 3 v k . , jk Teff (1.36) , mk T j mk m j Tk mj . - (1.36) v jk 1 V jk 2M exp k BT 2 MV jk 2k B T sinh 0 V jk | V j ; Vj MuV jk k BT Mu 2 exp 2k B T (u )u 2 du . Vk | – (1.37) - Vk – ( ; u |vj vk | – ), ; - 61 - mk M mj mk m j – . D–3He D–T, D–D [10]. p–11B – [99], v [10, 99] - jk . D–3He- [100] , T3He > TD. 3 , He - , . Q 1, . , Q 10 , . p–11B, D–3He , v jk - v D–D. . 1.16 - p 11B E c.m. 1 2 2 . MV jk , . . , . - 62 - 10 < v>, 10–22 8 700 600 3 500 6 / 400 50 300 4 200 100 Ec.m. = 0 2 20 0 0 100 200 300 400 500 Ti, p–11B . 1.16. ( ) , . , ( , ) . - (1.33), (v) . - 63 - . 1.17. D–T- : 1 – , ;2– - , - ;3– . 1.18. , , - 100 . 1, 2 – . . 1.17 - 64 D–T( . , ) - . , , u . . 1.17 1.18. - Te = Ti = T. , . D–T- - T ~ 10 - . , . . 1.18 Pinj – - , - . ~ 100 . ; , . , . - D–T, , , . , , ( [101]). 1.5 D–T , p–11B – 1.6 ., , D–3He . , - - 65 . , , , . 1.3. , , , , , , , . , , . , - . , - , . . 1. , cr. - 66 , , , - , . , - , , , - , - . , - . [102–110]. . , - . [111]: L- , H( ). - ( ) ) , , , H (high L (low ). . ( . sheared flows), . ) ( , - - 67 , . H- . , , - . , . - . , - , [111, 112]. , [111–116]. [109–112] [117–120], [121], [122–125] - . , , - , , , , , . , . , , - - 68 , ( ) . , , , ITER. . , , . . , , , . - , . , . , , - , . , , , - 69 (field reversed configuration, FRC), ( - ) . , - ( ), , . , . , , [108–112, 126, 127]. ( ) - [110–112, 128–134]. , , . , , , - [135]. (ITG) - [136–146], (TIM, Trapped Ion Mode) [147]. (ETG) [148–156]. - . - , (TEM, Trapped Electron Mode), ETG, , , , [156–158]. ETG- TEM. ETG- , - 70 , CLM [159]. (D e = D i = D ) ( D lc c i [137–140, 160] lc2 c 1 – (1 / k ) 2 eff , (1.38) ( , . i) lc eff ), 1/k – – - c (1.38). k - ky : k2 y– k y2 k2 2 k2 k y2 2 , (1.39) , . ( k|| k ). y . r ( - ). . [161] - 71 - D (k 2 0 (k 2 ) max , (1.40) ) max – 2 k ( . ) [114, 115] E E – q ( r )E r B ~ r , 2 q(r ) r rB (1.41) , Er B- , q(r) – , Er – - ,B– . - [113]. , ,– , - [162–181]. GAM [182–185]. , - , , , , [186–190] [191–194]. . , k , 1 - [113, 195]. [113, 195], . - - 72 Er B - [113] D 2 c 1 2 2 1 s c) , (1 rd ( E r B 1r 1 ) / dr s c k (1.42) ( 1 ), . , s E. [143] , (1.42). [195] Er B L (1 G1 2 E1 G2 2 1 E2) , – L ( L- ), E1 dEr / dr , E2 d 2 E r / dr 2 , G1 . G1 G2 – , G2 [195] , ITG- [137, 139, 142, 144]. [196] net E , . , , , [155, 197]. [136, 139, 141, 145] - - 73 , [140, 143, 194, 198] – . [142, 199] . ITG- [200] - . - (1.38) [137, 148, 161, 201]. ( ) , - [201]. - , , - [201]. , , [202]. , , - , , . [203–206]. - . , . , [207, 208]. - - 74 [207–211]. [212, 213], - [214]. [215–217]. , , , , , - , [208, 211, 218–221]. , - [222], [223]. [224] . ( ) ( ), . - , , - . . , , , D n, (1.43) - 75 D – , ;n ( - ) . (1.43) , , D . , , . [224] [225, 226]. , , , , . , , - ( ) . - , - , , . , , [227–230]. , , , - , , , , , [231] [232]. - - 76 , - [233]. , , ) - ( - . [105–107] , , [234–236]. , , , - , . , , , [237, 238]. - , [239, 240], [241–244]. ( ) – (Maxwell–Cattaneo–Vernotte) [245, 246]. , . 1.4. (1.5)–(1.7), , , . - - 77 - . , - . . , . - . - , , . . 1. , . 2. , , . 3. - 78 , - , - . 4. . 5. . . 1.19 , . ( - ) ) , , , , . 1.19. - - 79 , , . , , 1.2, . , . , - , , . - . - 80 2. 2.1. [224], . , - . [203, 204]. . , . , - . , , - . ( ), . [203, 204] ( - - + ) ( ) , - ( ). - . ( ) , , . . . , - . - - 81 . - , , , – , , , , , - . - . , , - , z, B r z, - . Er(r). , , . , ~ 0n g (r )cos( nt k nr k|| z n) , (2.1) n n– ; g (r) – ; ; 0 n ; ; k – – n 0n n 2 nrs – r 0 ; k|| – ( k|| k n ); rs – – , , (r=rs g (r)). r=rs (s=1, 2, 3, …). , n . (2.1) k n - - 82 - ~ Er~ E ~ r 1 r , (2.2) ~ . (2.3) ~ - . , (2.1) - . , k|| << k , , ) k|| = 0. - k|| - k|| = 0. - m m e– e m , k B Te (2.4) , kB – , Te – . , k . , - - 83 - (k ) 0 v g (k 0 k0 ) , (2.5) vg – k k0, k0 . , . k0 . , (k ) (k ) k. / k , (2.5) - , - . (2.5) , vg . . 2.1 . Er, , . Er vg VE Er / B – vg 0 VE vg 0 Er , B Er B, (2.6) ; vg0 – . - - 84 - ~ 0 m 2 || . 2.1. r = rs vg0 Er ( , ., , [244]), , , Er ( vg0 (2.6)). . dE r / dr . , (2.5) , 0 vg k0 . vg k , . - . ||<< 0, 0 2 / k0 , || – - - 85 . Ti , 0 ci ( Ti , ci – , – ) [105], 0 ~ Te , ci ce - ITG- . ( Te – , - , ce – ) - ETG[108]. 0 Te Ti , ~ ci - [248, 249]. m , q , vr v m dv r dt q E r~ Er (r ) m dv dt q E~ vr B , – , v B, (2.7) (2.8) , . ||>> , v v r2 v2 ) c , vg v ( – , - ( ||, . – , << 0, vg ) - - 86 - u V Er B vg V – mv 2 dB 2q B 2 dr mv 2 dB 2q B 2 dr vg vg 0 , (2.9) . (2.7), (2.8) dp r dt dr dt H , r r – , (2.12) H , P (2.13) mv r , P , pr , H (2.11) H H (t , r , , pr , P ) – H (2.10) H , pr dP dt d dt - mrv q , – - . pr2 2m (P q )2 2mr 2 q ~ q r, (2.15) E r. - - 87 , . r ( r | r| r r | r |), - r, ( r ) n( r ) r , n– (2.15) , r– , . – - , - , D n, (2.16) 1 2 rm , 3 D – (2.17) , rm – . (2.16) rm r , rm . rm Ln Ln , n (2.18) n – . (2.16) . - 88 (2.15) conv 1 rm n . 2 (2.19) , , , rm - . 2.2. [224–226] . . 2.2. ( || ~ , c ), - . . 2.2, , , . , , . . , - . , - - 89 . ( ) || . , . . 2.3 2.4, , , , . tint r E~ E~ B tint m Bu , . ~u/ D (2.21) r 2 m 0. k BTe eB 0u 2 - (2.20) E~ – || / u , 2 . (2.21) , u. , . - - 90 - . 2.2. , , B0 = 1 , m = 0.05 . - - 91 - . 2.3. . B0, m – . 2.2 . 2.4. , . 2.3 - 92 - 0.2 0.2 r, r, 0.16 0.16 0.14 0.12 0.1 0.14 vg = 0 0 10 v g = -3 0.12 20 t, 0.1 30 0.2 0 10 20 t, 30 20 t, 30 20 t, 30 20 t, 30 0.2 r, r, 0.16 0.16 0.14 0.12 0.1 0.14 6 0 10 -6 0.12 20 t, 0.1 30 0.2 0 10 0.2 r, r, 0.16 0.16 0.14 0.12 0.1 0.14 10 0 10 -10 0.12 20 t, 0.1 30 0.2 0 10 0.2 r, r, 0.16 0.16 0.14 0.12 0.1 0.14 20 0 10 -20 0.12 20 t, 30 0.1 0 10 . 2.5. B = 0.5 m = 0.1, Te = 100 , 100 , - 93 , , - . - , , - . vg , . - . 2.5 , 100 - , B = 0.5 vg . , . 2.5, - v*e k BTe /(eBLn ) ( v*e = 104 B = 0.5 , Te = 100 , Ln = 0.2 ). vg . 0.1, 100 B = 0,5 . , , m = - m, . u ~ v*e , 0 ~ Ln , (2.21) D ~ 2 m , (2.25) , [205, 206]. k BTe . eB - 94 - 2.3. 2.3.1. ~ . (r, ) ~ m cos( 0t 0 ) g || ( g t)g v g / rs 0 g (r ) , , 0 - 0 (2.26) – , const – - . g|| . 2.6). ( g . , , rm. , . , c / / 0, || , v / v g 0 ( = i, e) . . ( || : i, ci ) ( || i, ci ). - - 95 - ~ 1 2 2 mcos( 0t+ 0) || . 2.6. (1) (2), r = rs0 || ~ , c. . . 2.7, (x, y), , r, Er~, E , ~ ~ - . , 0 , / . 2.8. tint 0. 0/ m - - 96 - . 2.7. ( . B = 0.5 Te = 100 , rs0 = 0.18 , 1.5 105 = 0.29 i m , 0 =4 =0 ) , a = 0.2 , Ti = 100 , W0 = 100 , , , v g0 0.01vTi , || =4 Ti = 11.6 , 0 = mi = - 97 - r, 8 7 | r| 6 5 rm 4 3 2 1 0 0 1 2 3 . 2.8. ( 0 =0( 0 0/ 4 5 6 mi ) ) ( ) 0 - 98 - r, 8 7 6 | r| 5 4 rm 3 2 1 0 0 2 4 6 0/ 8 me . 2.9. 0 = 0 ( ) 0 ) W0, me i, rs0 – . = 1.88 105 . 2.7, 0. || =4 Ti =11.6 , m =4 , v g0 B, a, Ti, Te, 0.01vTe , - 99 - r, 8 3 6 2 4 4 2 1 0 -2 -4 -6 -8 - - /2 /2 0 0 . 2.10. 0: 4– m 0 =6 =4 me. 1 – 0 = 0.5 B, a, Ti, Te, W0, , v g0 0.01vTi , me, i, me 2 – rs0 – 0 . = 1.88 105 = me, . 2.7, 3 – || =4 0 = 1.7 me, Ti =11.6 , - 100 - | r|, 6 5 4 3 2 1 0 0 1 2 3 . 2.11. ||/ ( ||. v g0 0.01vTi , 0 = 4 0 6 i ) B, a, Ti, Te, W0, i, rs0 – mi, 5 . . 2.7, 0/ m | vg0 | m 0 < m, 2 || 2 =4 , =0 tint 0< m . 2 || /u, m, (2.27) - 101 - m ~ v /r . *e 0 >2 - m , ~ || . ( . 2.8), – || . 2.9, 2.10 . , E~ B rm 0 t 0 m tint Bu < 0 m , (2.28) m t int , ||. . 2.11 ||/ < 3.5 – u/ ||/(3.5 ) . , 0.3 ||/ . || , > 3.5 1, || (2.28) - . - 0. , , dB / dr , . u , 0 < m , (2.9), vg0 , - - 102 - rm 2 m k BTe eB ( ) || 0 . v 2g 0 (2.29) u 0, . res 1 res n 3 m || B 1 res n 3 m k BTe , eB || (2.30) nres – 2.3.2. , || c. . 2.12. ( v q m( v vg ) ,| v | |v vg |. || << ) - (2.31) - 103 - . 2.12. ( ) . B, a, Ti, Te, W0, , v g0 0.3vTi , || = 0.1 Ti, 0 = 0, 0 i, rs0 – = 0, = . res . 2.7, m = 20 - 104 - v /v , r/ m v qB r |v 2 (v || v g )tint , vg | E ~ tint . B |v | E~ ~ (2.32) 2 , || (2.32) r~ B(v vg ) . (2.33) v , vg . . res ( 2 . arcsin v . 2.13), res (t int ) max vg 0 0.1(2 / . - (2.34) - 0.1 . c). (2.35) - 105 - 0,1 || 2 || 1 v 2 2 tint || 2 c t int . (2.36) c , - , . 0 = 0. . 2.14 , . 0 ( c / 0) 0 c. | v g 0 |~ 0.3v , 0 - ~ 50 c. . 2.15. , | v g 0 | 0.1v - | v g 0 | /(0.1v ) . , , , , . | v g 0 | 0.1v 0.1v / | v g 0 | , - . , | v g 0 | 0.1v rm E~ B tint m | v g0 | 2 || B 0.1v t int 10 | v g0 | m || B c v || , (2.37) - 106 - | v g 0 | 0.1v rm 6 m 10 || B c v | vg 0 | || . (2.38) | r |, 5 4 3 2 1 0 - - /2 /2 0 0 . 2.13. ( ) . B, a, Ti, Te, W0, 0.29 , m = 20 , v g0 i, 0.1vTi , rs0 – 0 = 0, . 0 . 2.7, =0 || = 0.1 Ti = - 107 - rm, 2.5 1 2.0 1.5 2 1.0 3 4 0.5 0 10 -2 10-1 10 0 . 2.14. 0/ ( 0: 4 – v g0 0.29 , 1 – v g0 20 - 0.05vTi , 2 – v g 0 , 0 = 0, = 10 2 ) 0.01vTi . B, a, Ti, Te, W0, m= ci 101 res i, rs0 – 0.02vTi , 3 – v g 0 . . 2.7, || 0.3vTi , = 0.1 Ti = - 108 6 rm, 5 4 3 2 1 0 0.0 0.1 0.2 0.3 vg0 / v 0.4 0.5 i . 2.15. ( ) v g 0 . B, a, Ti, Te, W0, . 2.7, || = 0.1 Ti = 0.29 , m = 20 , 0 = 0, = res i, rs0 – . - 109 - rm , 2.5 2.0 1.5 1.0 0.5 0 10 100 . 2.16. W 0, ( ) . B, a, Ti, Te, rs0 – m = 20 , v g0 0.05vTi , 1000 0= . 0.3 . 2.7, ci, 0 || = 0, = 0.1 = = 0.29 Ti , res , ( v ~ vT , vT – ) , ( . v vT – - . 2.16). , (2.37), (2.38) rm , , . - 110 ( (2.37), (2.38)) v rm2 v 7 | v g 0 | / vT 2 k BTe eB 2 m | v g 0 | 0.07vT , v 2 c T || v , 0 , (2.39) 0.07vT <| v g 0 | 1.5vT . 0.5 . , , res. c / . 2.3.3. , . , - . , , . - . E~ 0. , - - 111 . , , ( i, , v ci , c , e, ce , c v v , v i) - (2.27)–(2.39) - e. rme rmi , e i. , 0.1 || ui - 0, Ln 0 r, 0 v*e / r u e | v g 0 | 0.1v*e . , , (2.27)–(2.29). : D i D 2 e conv i m conv e k BTe , eB 0.3 m (2.40) k BTe ne . eB Ln (2.41) ITGce , ~ || || - e, Te , ci , 0 10 Te , vg 0 0.2vTi , 0 i. || ce ci . - - 112 - D 3 2 k BTe Te 2 m eB Ti 20 e conv e 10 m (2.42) k BTe ne . eB Ti (2.43) (2.37)–(2.39) - , D conv i 2 m i m k B Te Te eB Ti k B Te Ti eB Te 0.25 0.5 , ni (2.44) . (2.45) Ti , . , , ( , ). , m, ( rm i i ), ( rme , e ). ( ) . - - 113 - : , ; ( ; ( ) ) , . 2.4. . [205, 206], - [203, 204]. , . , . . , - , . [207–210]. - . . , . ,– . r, , z. - - 114 B = Bz(r) z, Er(r) r. N , - E~ = E ( ,t) r = r0, t , ~ N ( , t) 0l lt cos( l l), (2.46) l 1 l, 0l l – , - l . l kl – l l 0, (2.47) , l, – . (r, ), 0, - r=r0 N dr dt l d r * dt E0l – q– E0l sin(l B 1 * Er (r ) Er (r0 ) B l , 0t . l), (2.48) mv 2 dB , 2qB 2 dr ,m– (2.49) , - 115 - Er ( r ) (2.49) r r0 , B (r ) d2 dt Er (r0 ) (r r0 ) dB (r ) dr B(r0 ) (2.50) dB (r0 ) , dr (2.48), (2.49) N 1 dEr r0 B 2 dr * 2 dEr (r0 ) , dr E0l sin(l l), * (2.51) l 1 [207–210]. - , P* , , dEr P*2 qB 2 r02 dr 2 ~ q . (2.52) l (r, r0 ) . (2.51), 1 H* qBr0 (r - ) - , , , . - - 116 - rs 2 0l dE r dr 1 , (2.53) , , . n , - . [126] D l 1 N N l( (2.54) l 1 – , rl – l l Ln rl )2 , 0 - . v*e / r0 , rl E 0l B 0 l B 0l 0 r0 , r0 , D m e 0 k BTe ne , ne 0 2 m k BTe , eB (2.55) – , ne ne – . (2.55) - 117 - a2 D 1 eBa 2 , 2 k T m B e a– (2.56) . , [205], GAMMA-10 [124, 125]. - P*2 A* 2 H* H – C* cos( * ) H* , (2.57) . (2.57) - , C A* . q m k B Te 01 (2.52). , (2.57) 1 dEr qB 2 r02 dr - [210] I I K sin , (2.58 ) I , mod(2 ), (2.58 ) - 118 - I 2 AP I – , I K – 2 4 , AC (2.59) 2 . K>1 . K 4 2 1 dEr q dr e2 L2n mv 2 dB 1 m k BTe 2qB 2v*e dr 2 . (2.60) [250] Hill’s vortex. . . 2.17. . 2.17 ) K = 1 - , K=2( . . . 2.17 ) , . , . - - 119 - r/a r/a * * ( ) . 2.17. ( ) ( ) [250] K = 2 ( ). B = 1 , 0 K=1( ) = 4 104 2.5. , - , . , ( , - ) . . , - 120 . [251]. - [252]. , - . , , , - . , . , - . ( - , ). . - , , , , . - , - . . , - , ( – ) r, . , - - 121 . B0 R , R r cos B (2.61) B0 – ;R– 1 ; - - – , . B Br q(r ) BR - , (2.62) , 1.2 3.5. , Vy Z– ZeB0 R B2 . , (2.63) ; v|| – ; B2 B ;m– , B mv||2 – - ; - 122 - ~ 0 – r cos R Vd Vy . r 0 g ( r )cos( t n n (2.64) ), , g(r) – , (2.65) – ,n – ,n – , . – - : E ~ 1 r ~ , E ~ 1 R r cos ~ , ~ Er~ r . , dr dt d r dt . E~B Vy sin B2 V y cos ( R r cos ) E~B d dt Vd Vd B v|| B B B v|| , (2.66) Er B Er~ B B2 B2 B B Er B B2 , Er~ B B2 (2.67) , (2.68) - 123 - d v|| dt ~ ~ Ze E B E B , m B 1 B sin B m R r cos B (2.69) Er – . v|| - , - d dt E d dt Er B E rB 2 v|| B E rB v|| qR , v|| B v|| ( R r cos ) B ( R r cos ) (2.70) , (2.71) Vd . r , (2.65) - , n n 0. - (2.72) v|| , , (2.72) . , - , , (2.72), - 124 , (2.72). , , /2. n 0 n 1 , 4 (2.73) 2v||r R2 (2.74) r2 – . (2.73) R2 r 2 , 8 Rr |n | , (2.75) , , . - , - n n 1 , 4 0. n 0 - (2.76) - 125 - - v|| v|| qR 1 v|| 1 2 1 Rr v 2 R 2 r 2 v|| E qR 1 v|| 1 E , (2.77) v|| – - , v – ( ). (2.76) R 2 r 2 v|| |n | 2 Rr v 2 1 qR v|| E , (2.78) , . . 2.18–2.20 n W||0 ( - ) r W, ~ - , E ~ . r r0 = 0,7 , W0. . 0 = /2. - - 126 0.715 0.71 0.705 r, 0.7 0.695 0.69 0.685 0 10 20 10 20 0 10 20 0 10 20 6.2 t, 30 40 50 30 40 50 30 40 50 30 40 50 5.8 W, 5.4 5 4.6 4.2 0 t, 200 E ~, 100 0 -100 -200 ~ , 50 40 30 20 10 0 -10 -20 t, ms t, . 2.18. ( ) n = 3, 3.24 105 , 0.7 , q(r0) = 3 , W||0/W0 = 0.6. W0 = 5 , 0 = 50 , B0 = 3 a=1 = ,R=3 , r0 = - 127 0.715 0.71 0.705 r, 0.7 0.695 0.69 0.6850 10 20 10 20 0 10 20 50 40 30 20 10 0 -10 -20 0 10 20 6.5 t, 30 40 50 30 40 50 30 40 50 30 40 50 6 W, 5.5 5 4.5 0 t, 200 100 E ~, 0 -100 -200 ~ , t, t, . 2.19. ( ) n = 3, 3.74 105 , W||0/W0 = 0.8. W0, 0, B0, R, a, r0, q(r0) – . . 2.18 = - 128 0.72 0.715 0.71 0.705 r, 0.7 0.695 0.69 0 10 20 10 20 10 20 10 20 6.5 t, 30 40 50 30 40 50 30 40 50 30 40 50 6 W, 5.5 5 4.5 4 0 600 t, 400 200 E ~, 0 -200 -400 -600 0 50 40 ~ , t, 20 0 -20 -40 0 t, . 2.20. ( ) n = 8, 9.98 105 , W||0/W0 = 0.8. W0, 0, B0, R, a, r0, q(r0) – . . 2.18 = - 129 , A = 3, , = 1. , . , - , . , (2.69). - . - ( ) ( - ) r ~ E . qR E||~ (2.79) ( ) , - . Ze , 20 % ( Vr . 0 /W0 1% - . 2.18–2.20). n 0 rB , (2.80) . (2.76) - 130 - v|| v|| qR v|| 1 4n qR( v|| E n , E) n (2.81) . (2.82) ci . ) , - , . (2.65) - , Ze 0 m | v|| | . v|| . (2.83) (2.83) - , . v v|| qR Ze 0 k BT - v|| E 1 v|| 8n 2 vT 2 q2R2 ( n 8n 4 vT2 E) 2 1. (2.84) - 131 - qR E > v|| 1 Ze 0 k BT (2.84) 8n 2 (2.85) 2 qR E 1. (2.85) T , - v|| ~ vT , qR E vT . - . , - . ( << , ei D col ~ Vr2 ~ ) - 1 ei . (2.86) , . - ( ~ ) D ~ Vr2 1 . (2.87) - 132 - e 0 D ~ k BTe 2 k BTe . eB (2.88) , . e , 0 kBT ( . 2.18–2.20), - kBT , . . , - , , , - . . , , (2.66)– (2.69), ( ) (2.57). - (2.67), (2.69) d dt dP* dt A*P* , C* sin (2.89) r2 q2R2 (Ze ~ ), (2.90) - 133 - B mr v|| B P* mr 2 E, 1 A* mr 2 , C* r2 r 3 mv 2 , 2 2 Ze q 2 R3 2 q R ~ , H* . - . (K 1) , ( - . . 2.17). . , - , , . , , (2.88) ( K 1 ). (K >> 1) - , . . , . - , - v . 2qR (2.91) , b v R2 2qR R 2 r 2 . - - 134 - 4 K 2 AC 2 4 2 b r . R (2.92) , ( ). - , V y2 D b 1 . (2.93) , (2.93) ( « Vy ~ ) ». k BT 2 ZeB0 R D i , b ~ 1 k BT qR m q i R k BT 2 ZeB0 R - . (2.94) (2.94) , . , (2.92) , . (2.92) , , . - - 135 - Ze 0 r 2 r3 ~ C* ~ 2 3 k BT . q2 R2 q R (2.95) (2.95) , . 2.6. . - – , - , . . , : , , . - , , - , . , , , - . . , , . - - 136 , . . - , , . , ( ) - . . ( ) . , . . - 137 3. 3.1. - ( – ). , . - . , , - , , . , , - . [110]. ( Temperature . Gradient) 2): (ITG, Ion , (ETG, Electron Temperature Gradient) - - 138 , , « - ». ITG- , . ne1/ne = e 1/(kBTe), ne1 – , ne – ,e– , kB – . Ti , Te – ITG- k ~ 1/ – Ti, . ETG- –q 1/(kBTi), : ni1/ni = ni1 – ,q– k ~ 1/ , ni – - . - , Ti – Te, Te – . 2. - - = k R - ITG - ETG - » – - - - i 0, e =0 e 0, i =0 i = 0, e =0 = Re( ) ~ 1/ Ti ~– ~ 1/ Te ~ 1/ Ti Im( ) *i ~ *i ~ *e ~ *e ~ *i ~ R – - 139 , Ti Te, - [104]. k < 1/ Ti, ~ *i. - k *j j = i, e – k BT j q j BLn . (3.1) ; kB – ; Tj qj – ;B– 1 dn n dx 1 Ln ; 0; - (3.2) x . Ln . , Lni = Lne. , ( Ln. i ), , Ln / LTi 0 Lni = Lne = Ln e Ln / LTe . 0, - 140 1 dTi, e . Ti, e dx 1 LTi, e i = e (3.3) =0 , - . , , [104]. , k ci , *i ci – . ITG- ETG- - [106]. *e, Te, Ti ci , *e = Te/Ti 1/ , *i i e. - 0( – ); . - ( ~ 0.1 ) ( ) [107, 138, 253–255]. [107, 150, 256–262]. ; ITG- ETG- . – [150, 260, 263]. - , Ti << Ln. - 141 , - ( ). – , , , ( ( . ) . [106, 107] [108, 110, 128, 132]), , . . k << 1/ [102]. Ti k ~ 1/ - Te. [263, 264], [265, 266], ETG- [266] , - . , , (FRC), [267]. ~ 1, . ETGTi . << Ln - , k . Ti ~1 - , - - 142 [258] - . [259]; [268–270] ~ 0.03. , ( ~ 1). , , - . , - , , ( ) - , ( , FRC). , ~1 . ~1 . ~ 1 . , . , ( ). - . B Ln / LB R Ln / R , 1 LB 1 dB B dx (3.4) - 143 - – ,R– - . , B 0 ( . , , ) 0 R , R - 0 – - , 0, B R 0; 0, B B R 0 B 0, R R 0; - 0, B 0, 0. - B 2 , 2 0 p / Be Be 1 , Be – - – p - . 2 , 0p/B 2 /(1 ). - 1 LB 2 j 0 n j k BT j (1 j j) j 2 Ln , (3.5) / B2 – j ,B– B R, . B . = Ln/LB, *j j - - 144 ~ 1. , , , - . - , , . 1) ~ 1 ITG- ETG- ( 0) . , , ITG- , ETG- - ? k|| L , - 0. , k|| < /L , . 2) k|| = 0, . . ~ 1. , k|| = 0 , 3) - - ~1 k||. , k|| = 0 , [106]. , . 4) [106, 107, 254, 255, 264–268], - 145 (3.5). ~ 1, ( ), , , - . 5) , - , R = Ln/R. 3.2. , , - , - ( ), , y x z z. , t v qj mj ( v B) v qj f1 j mj q j f1 j d 3 v (E1 v B1 ) v f0 j , (3.6) 0, (3.7) q j vf1 j d 3 v , (3.8) j B1 0 j - 146 - qj – j (j = i, e); f1j – - ; f0j – , v– ; E1 – ; B1 – - . A1 1 E1 A1 , t 1 B1 - (3.9) A1 , (3.10) 0. A1 [271, 272] : df1 j qj dt mj (v , v mj – )( 1 d dt v|| A1|| ) ( v t , (v )( A 1 )( A1 ) f0 j , ) v (3.11) A1 v , v – , v|| – , || - . , [271, 272]. , - 147 [273–297]. , - , , . , , - . . , - . , , , , - , . , - . , , . . [298] f 0 j ( v, x ) f M 0 j (v 2 ) 1 j x vy cj , (3.12) - 148 - f M 0 j (v ) 2 n0 j 3/ 2 mj exp 2 k BT0 j , cj m jv2 2k BT0 j – - – , n0j T0j nj Tj j f Mj (v , x ) 2 n j ( x) mj 3/ 2 exp 2 k B T j ( x) - 1 f Mj fM 0 j x x = 0, , x 0 m j v2 . 2k B T j ( x) (3.12) f0j - . Tj/L << 1, L– . Tj/L f0j - << 1, f1j . ~( 2 Tj/L) [262]. - , | f1 j / f 0 j |~ Ti /L. - , k – k|| << k , k|| . , [271, 272], - [150, 258, 261, 262] qj j qj 1 k BT j fM0 j hj J0 ( j) 2 v dv dv|| 0, (3.13) - 149 - k B1|| q j h j J1 ( 0 j )v 2 v dv dv|| , (3.14) j )v|| 2 v dv dv|| . (3.15) j k 2 A1|| q j hjJ0( 0 j 1, B1|| A1|| – ; || ; 0 ; f M 0 j ( v) – ; J0( – J1 ( j) – j k v / cj ; v – - ; v|| – – j), ; cj ; hj *j Dj k || v|| ( 1 v || A1|| ) J 0 ( j) v B1|| k J1 ( j) q j fM0 j k BT j (3.16) – ; Dj k VDj – ; VDj – , ; *j *j 1 j m j v2 2k B T j 3 2 . (3.17) - 150 - Dj *j mj B k BT j v2 2 2 R v || . . (3.18) , . - , , , , 0, . , , B (3.18), R, . , B/ R = –1. R, B . B B . R , R v , , , v|| - ). , . B R - - 151 (3.13)–(3.18) 1, vTe B1|| A1||. a11 a 21 a12 a 22 a13 a 23 v Te B1|| / k a 31 a 32 a 33 v Te A1|| 1 0, k B Te / me – a11 a12 a13 a 21 a 22 a 23 a 31 a 32 (3.19) , 1 Ci i Ci i F10 i F10e , (3.20) e F20 Ci i i i F20 , (3.21) F11e Ci i i i F11 , (3.22) e F20 e F30 e F21 F11e e F21 i i i F20 Ci Ci 2 i i i F30 Ci Ci (k Te ) 2 i i i F21 , i i i F11 Ci a12 , 2 i i i F21 (3.23) 2 2 , (3.24) e (3.25) a13 , a 23 , (3.26) (3.27) - 152 - e F12 a 33 Ci i 1 2 Rj j r Rj *j *j j 1 J 02 ( j ), j 2 J0( (3.32) (3.32) (3.20)–(3.28) j ) J1 ( 2 2 , (3.28) e q i Te , eTi (3.30) vTi , v Te (3.31) v2 v||2 v r v||s dv dv || , 2 v2 v||2 j 3 2 2 Dj k || Lnj *j k j ), Te ) (3.29) exp 1 (k qi ni , ene i Frsj 2 i i i F12 Ci j 3 (3.32) , (3.33) v|| Tj J 12 ( j ). r = 1, 2, 3; s = 0, 1, 2. (3.33) . . - - 153 - a11 (a 22 a 33 a 23 a 32 ) a12 (a 21 a 33 a 23 a 31 ) a13 (a 21 a 32 a 22 a 31 ) 0. (3.34) , , - : k||, k , R, i, e, ( = Te/Ti. *), , B, - . 0 , 1, B1|| = A1|| = 0. - (3.13)–(3.15) - (3.13), 1, . a11 ( B = R 0. (3.35) 0. k || = 0) , , - F11j k|| = 0. F21j 0 , a13 = a23 = a31 = a32 = 0, (a11 a 22 (3.34) , a11 a 22 - a12 a 21 )a 33 0, - a12 a 21 a 33 0. 0, (3.36) (3.37) - 154 - B1|| [107, 141, 253–255]. - (3.35). - ; = 0. , - , , , . . ( F10j , F12j , F20j , F30j v|| R = 0), - : 1 F10j *j 1 *j *j j 1 J 02 ( Lnj v 2 LB 2 *j F12j v2 2 j v2 2 Lnj v 2 LB 2 J 02 ( j ) exp j ) exp v2 v dv , 2 v2 v dv , 2 (3.38) (3.39) - 155 - 1 *j F20j j 1 J0( Lnj v 2 LB 2 *j 1 *j F30j v2 2 *j j v2 2 j )J1 ( 1 J 12 ( Lnj v 2 LB 2 j ) exp v2 2 v dv , 2 j ) exp (3.40) v2 3 v dv . 2 (3.41) , , - . - , [299]. (3.21)–(3.28) - i. F10i (3.36) e e F10e , F20 , F30 , , , ITG- ETG- . : , . - - 156 - 1 i *i B *i 1 v 2 e *e *e *e exp( 0, *e << 1, (3.43) v 2 B ETG- (3.42) 1 1/ , (3.42) e 2 0 )d exp( 2 0 i i )d 1 , (3.43) (3.42) – e , ITG- << 1. (3.43), B. , B , Im( ) >0 R > 0, ETG- Re( ) R – R - ITG- < 0. ITG- ETG- k|| (3.28) 1 e *e 0 *e B v2 2 v2 2 J 02 ( e ) exp 0. (3.39), v2 v dv 2 R (k i Te ) 2 2 . - . (3.44) e , - 157 (3.44), 1 i *e v2 2 e 2 R B *e v 2 B : v2 2 2 2 J 02 ( e ) exp v2 v dv 2 0. (3.45) *e (3.45) , B >0 > 0. B - < 0. , , - . [300–302], , - , . . 0 k B Ti /(eBLn Ti ) . :k Ti, k||Ln. Ti = Te. = Te/Ti , , 0.5–2, . - - 158 3.3. 3.3.1. , . 1/LB = 0, 1/R = 0. 0 , - , (3.35) 1 i F10 F10e 0. 0 ( Di, e (3.46) ) , (3.46), 1 e 1 3 2 1 e Z ( e ) 0 (be ) e e e e[ e 2 e Z ( e )] 0 (be ) e e e Z ( e ) 0 (be ) e 1 1 i 3 2 1 i i i i[ i 1(be ) 0 (be ) i Z ( i ) 0 (bi ) 2 i Z ( i )] 0 (bi ) i i n (b) e e Z ( e )be I n (b) exp( b) , In(b) – i i Z ( i ) 0 (bi ) i i Z ( i )bi 1 (bi ) 0 (bi ) . (3.47) ; - 159 - bi k2 2 Ti , be k2 2 Te , Z( ) e u du u 2 1 (3.48) – i e k|| 2k BTe / me , k|| – , mi k|| 2k BTi / mi me – . ni1 ne1 , [293] , 1 1 *e 1 3 2 e Z ( e ) 0 (be ) e *e e e e[ e Lne 2u 0|| e Lue vTe e 1 2 e Z ( e )] 0 (be ) eZ ( e ) e 0 (be ) e e Z ( e ) 0 (be ) e 1 1 *i 3 2 1 i Z ( i ) 0 (bi ) i *i i e e Z ( e )be i i[ i Lni 2u 0|| i Lui vTi i 1 2 i Z ( i )] 0 (bi ) iZ( i ) i 0 (bi ) i i Z ( i ) 0 (bi ) 1(be ) 0 (be ) - 160 - i Lui ; u0zi u 0 zi /( u zi / x ) ; Lue 1 (bi ) u 0 ze /( u ze / x) ; uzi 0 (bi ) . (3.49) uze – - u0ze – . , u0||i / Lui i i Z ( i )bi u0||e / Lue (3.49) (3.47) 0, . 3.3.2. ITG ETG ITG- , ETG – . (3.47) 1 i 1 3 2 1 i i i i[ i 1 e 1 e 3 2 e e e[ e : i Z ( i ) 0 (bi ) 2 i Z ( i )] 0 (bi ) i 1 - i i i Z ( i ) 0 (bi ) i i Z ( i )b 1 (bi ) 0 (bi ) 0 (ITG), (3.50) e Z ( e ) 0 (be ) 2 e Z ( e )] 0 (be ) e e e e Z ( e ) 0 (be ) e e Z ( e )b 1 (be ) 0 (be ) 0 (ETG). (3.51) - 161 R e( )/ *i Im ( )/ 1 0.0 *i 0.4 2 3 -0.2 4 0.3 -0.4 4 -0.6 0.2 -0.8 -1.0 0.1 -1.2 1 -1.4 0.0 R e( )/ 0.1 0.2 0.3 k || L n 0.0 0.0 0.4 0.1 Im ( )/ *e 8 1.4 3 2 0.2 0.3 0.4 k || L n *e 0.4 1.2 8 0.3 1.0 0.8 0.2 0.6 0.4 7 0.2 5 0.1 6 5 0 0.1 0.2 0.3 k || L n 0 0.4 7 6 0.1 . 3.1. 0.2 0.3 ITGRe( )/ *i, – Im( )/ 3– k 8– i – Im( )/ *e): 1– = 2, = 1, k = 0.3; 6 – Te e = 5, = 1, k i = 2, Ti e *i) = 1, k = 1; 4 – = 2, Te ETG- i (a – ( = 0.3; 2 – = 5, = 1, k = 0.5, k = 0.3 Ti Te = 1; 7 – i Ti = 2, – Re( )/ = 0.5, k = 0.3; 5 – e = 2, 0.4 k || L n e Ti = 2, = 1, k Te *e, = 1; = 1, = 1; - 162 (3.50) ITG: (3.51) , ETGe, i 1/ , k k Ti Te, - R/ – *i R/ *e, / / *i *e. . 3.1. 3.3.3. Z( ) , . Z( ) 4 3 2 2 1 Z( ) ... i 1 2 3 2 e 3 ... 4 5 <<1, (3.52) >>1. (3.53) (3.48), . 3.2–3.4. ITG (ETG) ( . [1 (1 (3.50) 0 )] z 3 0 ) (3.51) i b( 0 (1 0 )] z 3 0 e b( 0 0 : z2 1) 0 [ - i 0 1) z2 e 0 0Cz b( 0 1) C 0, (ITG) (3.54) (ETG) (3.55) 0Cz b( 0 1) C 0, - 163 - Z( ) Z( ) 1 2 0.5 1.5 0 1 -0.5 0.5 -1 0 -1.5 -0.5 0 0.2 0.4 0.6 0.8 1 -2 0 0.2 0.4 0.6 0.8 Arg( )/ Arg( )/ . 3.2. | |=0,1. : –––––– – . z C – – / i ,–––– – | | << 1: – – – – – – (ITG), z (k|| / k ) 2 ( Ln / 0) , – – Te ) 2 /| e C | (ETG), (k|| / k ) 2 ( Ln / Ti ) 2 (ITG), (ETG). 1 1 1 [103] ( b 0 , (3.54) 0 1, (3.55) 1 3 z z2 Cz C 1 i 0, (ITG) (3.56) z3 z2 Cz C (1 e) 0. (ETG) (3.57) - 164 - Z( ) Z( ) 2.5 4 2 3 1.5 2 1 0.5 1 0 0 -0.5 -1 -1 -2 -1.5 -3 -2 -2.5 0 0.2 0.4 0.6 0.8 1 -4 0 0.2 Arg( )/ 0.4 0.6 0.8 1 Arg( )/ Z( ) Z( ) 4 3 3 2 2 1 1 0 0 -1 -1 -2 -2 -3 0 0.2 0.4 0.6 0.8 1 -3 0 Arg( )/ 0.2 0.4 0.6 0.8 1 Arg( )/ . 3.3. | |=1. : –––––– – . | | >> 1 ( ) ,– – – – – - , – – – – – | | << 1 ( ): – – – – – - - 165 Z( ) Z( ) 0.8 0.5 0.6 0.4 0.4 0.3 0.2 0.2 0 0.1 -0.2 0 -0.4 -0.1 -0.6 -0.2 -0.8 0 0.2 0.4 0.6 0.8 1 -0.3 0 0.2 0.4 Arg( )/ 0.6 0.8 Arg( )/ . 3.4. | |=2. : –––––– – . – – , – – , (3.56) (3.50) b. (3.57) , (3.54) . | |~1( , , - (3.51) , | | - , – – – – – | | >> 1: – – – – – – 1 2( . , b << 1). | | (3.55) . 3.3 3.4). 3.3.4. , 0 k|| 0, . - 166 - . 3.5. k||bLn k Ti i = e = 2, = 1 . 3.1, , k||b. - , k|| L 2 L– 0, 1, 2, 3, ... , (3.58) . k|| = 0 , , k||bLn > 2 Ln/L. - 167 , (3.58) k|| L / 0, 1, 2, 3, ... , L– . - , L - . . 3.5. . 3.5 k Ti , 2 Ln/L ~ 0.3, , 2 Ln/L ~ 0.17, < 1. 3.3.5. i ITG- ITG k Te ETG k , e , - ~ 1. Ti ~1 ITG Re( ) < 0, 0, ETG – Re( ) > k , Re( ) . k , i [304]. . 3.6 R Im( ) e - = Re( ) = k|| ( k . ) . 3.6 ( = 1, 6 (3.48) ITG, k Ti >9– ETG. e= i= 2) k Ti < - 168 - . 3.6. k||Ln 2; 2 – e= 0, i= = 1, k 2 (ITG); 3 – e= Ti 2, =6( ) i= k Ti = 9 ( ): 1 – e = i = 0 (ETG) k Ti 3.7. k||Ln . - ITG ETG. 0 k BTi /(eBLn Ti ) . - 169 - . 3.7. k 1– i = 4– i = 2, e = 2, e = 1; 2 – i = e = 2, = 0.5; 3 – k||Ln = 0.085: Ti i = 3, e = 2, = 1; = 3, = 1 . 3.8 - R . R . 3.9. - (3.35) . (3.35) ITG- ETG- , . - - 170 / 0 0.45 0.40 0.35 6 0.30 0.25 0.20 4 0.15 5 3 0.10 1 2 0.05 0 1.0 0.05 R/ 0.10 0.15 0.20 k||Ln 0.25 0 6 4 0.8 0.6 0.4 0.2 1 0.0 3 5 -0.2 -0.4 . 3.8. 2 0 0.05 0.10 0.15 0.20 ( ) k||Ln 0.25 ( ) - k||Ln (Ln/LB = 0, Ln/R = 0) 2–k Ti = 1; 3, 4 – k Ti i = = 10; 5, 6 – k e = 2, Ti = 1, = 15 = 0: 1 – k Ti = 0.5; - 171 / 0.20 0 4 0.15 2 0.10 4 0.05 3 1 0 3 -0.05 -0.10 . 3.9. 0 4 8 ( 12 16 20 k Ti ) ( ) k 2, (Ln/LB = 0, Ln/R = 0) Ti = 1, i = e = = 0, k||Ln = 0.02: 1, 2 – ; 3 – ITG- . , ; 4 – ETG- k Ti ~1 k||Ln ~ 0.2. L < 10Ln, , ck . Ti >> 1 - . 3.3.6. i 0 e 0 : i 0,1, e 1–2, - 172 0,5 ( ) , 0,1 ( ). (FRC) [305, 306], . i - 0 ETG- . (3.47) . 3.10–3.16. . 3.10 - k Ti k||Ln. (k||Ln)b k Ln ~ a / 2 , L ~ a k || Ln . 3.11. Ti (3.58) , , , 1. . k|| Ln L ~ 10a , , 0,3 . - , . . 3.11 , . - . ( (k . Ti . . 3.11), ~ 10 2 , k Te 1 ), ETG- - 173 Im( )/ 1E+1 Re( )/ 1E+2 0 0 1E+1 1 1E-2 Ti = 0.1 10 100 1 0.1 20 0.1 k 1 100 1000 0.1 20 1000 10 1E-2 1E-3 k 1E-4 1E-3 1 1E-2 Im( )/ Ti 1E-3 = 10 0.1 1 k||Ln 1E-4 1E-3 1E-2 0 Re( )/ 1E+1 0.1 0 k 0.1 1E-2 1 k||Ln Ti = 100 1 100 1 0.1 0.1 0.1 300 10 1E-2 1 1E-3 10 300 1E-3 1000 1E-4 1E-4 k 1E-5 1E-3 = 1000 1E-2 Im( )/ 1E+2 Ti 0.1 1 k||Ln 0 1E-5 1E-3 1E+3 1E-2 Re( )/ 0.1 0 1E+2 10 100 10 1 0.1 1000 25 0.01 k 0.01 10 1 1E-3 Ti =1 0.1 k Ti = 25 1E-4 10 1E-4 0.001 0.1 0.01 0.1 1E-3 1000 1 100 0.1 1 k||Ln 1 10 k||Ln 1E-5 0.001 0.01 0.1 1 10 k||Ln . 3.10. k k||Ln: 0.5; – e = 2, i – e = 2, = 0.1, = 0.1 i = 0.1, = 0.5; – e = 1, i Ti = 0.1, = - 174 (k||Ln)b 1E+1 3 1 1 0.1 2 2 1E-2 1E-3 0.1 1 1E+1 1E+2 1E+3 k Ti . 3.11. k||Ln 2– k e = 1, i = 0.1, = 0.5; 3 – 1E+1 e Ti: 1 – = 2, i e = 2, i = 0.1, = 0.5; = 0.1, = 0.1 (k||Ln)m 3 1 1 0.1 3 2 2 1E-2 1E-3 0.1 1 1E+1 1E+2 1E+3 k . 3.12. Ti k||Ln, k Ti, k Ti. 1, 2, 3 – . . 3.11 - 175 - Im( )/ 1E+2 0 3 1E+1 1 1 0.1 2 1E-2 2 1E-3 1E-4 0.1 1 1E+1 1E+2 1E+3 k . 3.13. Ti k Ti. 1, 2, 3 – 3.11 Re( )/ 1E+2 0 3 1E+1 3 1 1 2 0.1 2 1E-2 1E-3 0.1 1 1E+1 1E+2 1E+3 k . 3.14. Ti k||Ln, , k Ti. 1, 2, 3 – . . 3.11 . . - 176 | i| 1E+2 1 3 3 1E+1 2 1 2 0.1 1E-2 0.1 1 1E+1 1E+2 1E+3 k . 3.15. Ti | i|, k 1E+2 , Ti. 1, 2, 3 – . - . 3.11 D/D0 1E+1 1 0.1 1E-2 1 1E-3 3 1E-4 2 1E-5 2 1E-6 1E-7 0.1 1 1E+1 1E+2 1E+3 k . 3.16. Ti k . . 3.11 Ti. 1, 2, 3 – - 177 k||Ln, k . 3.12, Ti k Ti – . 3.13 3.14 . - , - ~ 10 0 ( . . 3.13). . 3.15 | i|, , k Ti. , - 0.1 < | i| < 2, - , , - . , D k 2 , - . D0 2 Ti 0 , (3.59) D / D0 . k D 3.16. , , k . Ti 2 k Ti >> 1, ETG , . [307], k Ti >> 1, k 1/k , (~ Te - ~1 - Ti). , ni1 / ni , ETG- q , 1 /( k BTi ) , (3.47) - k Ti 20 . ITG- - 178 , n e1 / ne e 1 /(k B Te ) , k Ti 1 - (3.50). ( e ~ 1, 1 , Te / Ti ~ 0.5 ). i , ITG- ETG- . - k , Te ~1 - . 3.3.7. , . , . [303]. , , - , - , . , [113]. , , - (3.49). (3.49) k|| . –k||. . 3.17 - - 179 . , , . , - , . . 3.17. ( ) ( ) ( ). k Ti = 1, ( Ln / Lui )(2u0|| i / vTi ) 0.5 ) i = e = 2, ( = 1, - 180 3.3.8. , k Ti ~1 [113] D k 0 2 k , (3.60) – , k 2 , . - , [113] D D 1 ( 0 s / ) 2 . (3.61) s – du / dx , 1 d u ,u – r dr r s . k , ETG- - Te ), , , [150]. k Te ~1 , ~1 D 2 Ti . (3.62) - 181 - i k|| Ln = e = 2, =1 , 0.2 0.3 , k|| Ln ~ 0.1 . . 3.18 - k k k Ti . 2 2 D gyro k BTe , Ln eB Ti , - [111, 112]. . 3.18. k (1) (2) i = e = 2, = 1 2 - 182 , i = e = 2, =1( . . 3.18), , k Ti - k ~ 1, D s ~ 0.1 0 0.1k BTi /(eBLn 2 . - 0.17 Dgyro . - Ti ) , . D (3.62). - 0.07 Dgyro , - , - , [111, 112]. 3.4. 3.4.1. ( ) vTj A 2 k A~ 0 j vTj , , k BT j / m j . 3 q j f1 j d v ~ 0 ene vTe j i, e e k BTe vTj A ~ , 0e 2 ne vTe vTj k 2 k BTe vTj A e 2 0 ne k B Te 2 B 2( k 2 Te ) vTe . vTj . - (3.63) - 183 ITG - e f 0e . k BTe f1e , (46) . ITG ( , e k , (3.63) ( ~ 0,1 ) Te - ) . (3.63) 1, ETG- . . , - , f1 j qj k BT j *j f0 j J 02 ( j) Dj k|| v|| qj f1 j d 3v 0 , qj k BT j ( v|| A|| ) f 0 j , (3.64) (3.65) j q j v|| f1 j d 3 v 0 2 k 2 A|| . A|| (3.66) j a11a33 , (1 a13a31 0 , i F10 F10e ) e e ( F12 2 i ) 2(k F12 Te ) 2 e e ( F11 i 2 F11 ) 0 . (3.67) - 184 - (3.67), (3.34). - , - , , (3.35). 0 e (3.67) - (3.47), , . - (3.35) - , . ~ 0.1 , k|| - 0. , - , , - . 3.4.2. , k|| - 0 B. k||Ln . 3.19. k|| = 0 B = Ln/LB - . , B . 3.20 = Ln/LB: B > 1, 0 B ~1 0 B ~ 1. - 185 *. , B >1 , 0 3.20 ( . . . 3.20 ). . , ( ETG- ), , ( ). , k Ti >> 1 - . / 0.16 / 0 0.14 4 0 3 6 3 0.12 0.10 6 2 0.08 0.06 7 0.04 0.02 5 0 3 2 1 -1 2 0.00 -0.02 0 4 1 1 0.01 5 0.02 . 3.19. 0.03 k||Ln ( -2 0.04 0.0 0.5 1.0 ) k||Ln 1.5 ( - ) k||Ln i = e = 1; 2 – Ln/LB = 1.5, k 0.25, k Ti = 2, Ti = 1, Ti =5 = 1, Ln/R = 0: 1 – Ln/LB = 1.5, k = 5; 3 – Ln/LB = 1.5, k = 1; 5 – Ln/LB = 0.5, k – Ln/LB = 0.5, k * Ti Ti Ti = 20; 4 – Ln/LB = – = 1; 6 – Ln/LB = –0.25, k Ti = 5; 7 - 186 / 0.15 0 3 / 0 4 1 2 2 0.10 4 5 1 3 0.05 5 0 -1 0 5 10 15 . 3.20. 20 k 25 0 5 10 15 20 Ti ( ) ( k 25 Ti - ) k 1.5; 2 – 0.25; 5 – Ti * i = e = 2, = 1, Ln/R = 0, k||Ln = 0: 1 – = 0.5, Ln/LB = 1.5; 3 – * * = 1, Ln/LB = 1.5; 4 – * = 0, Ln/LB = = 1, Ln/LB = – = 1, Ln/LB = 0.5 . 3.21 . (F10, F20, F30). ( * , - F12 1~ B . . 3.22). . ~1 ~1 0 , B > 1. B ~1 0 B Te ~ 1. - ~ 1 - , k k 0 Ti > 1, - - 187 F10 F20 2.5 0.2 2 2.0 1 0.1 1.5 1.0 1 0.0 0.5 2 0.0 -0.1 2 -0.5 2 -1.0 0 5 10 15 20 k Ti -0.2 25 0 F30 5 10 15 20 k Ti 25 F12 0.1 1 2.0 2 2 1.0 0.0 0.0 -0.1 -1.0 1 1 1 -2.0 -0.2 -3.0 -0.3 2 2 -4.0 -0.4 0 5 . 3.21. 10 15 20 k Ti 25 -5.0 0 ( 5 10 ) 15 20 ( k Ti 25 ) (1) (2) k 1.5, Ln/R = 0, k||Ln = 0 Ti i = e = 2, = 1, * = 1, Ln/LB = - 188 / 3 0 / 3 0.2 0 2 1 2 3 0.1 3 2 2 1 2 1 1 1 3 3 0 2 0 1 1 2 -1 -1.0 -0.5 0 0.5 . 3.22. Ln/LB 1.0 ( -0.1 0 1 2 3 4 ) ) Ti = 1, * = 1; 2 – k R Ti = 5, i = * = 1; 3 – k e = 2, Ti = 5, = Ln/R * =0 - ), . . . 3.24 i . 3.24, - = 1, Ln/R = 0, . 3.23. , 5 ( Ln/LB k||Ln = 0: 1 – k Ln/LB - e i i >0 e > 0. , e i . e i,e < 0. - - 189 / 0 1.5 2.0 R/ 0 5 1.5 1.0 1.0 4 1 0.5 3 5 0.5 0.0 1 4 6 -0.5 0.0 . 3.23. 2 -0.5 2 3 0.0 -1.0 6 Ln/R 0.5 -1.0 -1.0 -0.5 ( ) 0.0 ( ) - Ln/R 1, k||Ln = 0, k Ti 0.5 Ln/R = 1 (1–3) k i = e = 2, = 1, * = = 5 (4–6): 1 – Ln/LB = –0.3, 2 – Ln/LB = Ti 0.65, 3 – Ln/LB = 1.5, 4 – Ln/LB = –0.2, 5 – Ln/LB = 0.5, 6 – Ln/LB = 1.5 / 1.4 R/ 0 2 0 1.2 1 1.0 2 3 0.8 1 0 0.6 3 0.4 3 3 1 2 -1 0.2 0 1 . 3.24. 2 e 3 -2 0 1 ( ) = 1, 2( * 2 ( ) = 1, Ln/R = 0, k||Ln = 0, k Ti = 5, i = 3 e e e ( ), i ): 1 – Ln/LB = 1.5, 2 – Ln/LB = 0.5, 3 – Ln/LB = –0.2 = - 190 3.4.3. , - . 3.25. - , , B > 0, e - >0 B < 0, e <0( . . 3.25). - , i F12 , , , , - . , , . / 18 0 16 14 12 5 10 4 3 8 6 1 4 2 0 2 3 4 5 0 10 . 3.25. 20 30 k Ti ( ) ( - ) = 1, 2, Ln/LB = 1.5; 2 – e i = e, * = 1, Ln/R = 0, k||Ln = 0: 1 – = 0, Ln/LB = 1.5; 3 – –0.5, Ln/LB = –0.5; 5 – e = –0.5, Ln/LB = –1 e = –1, Ln/LB = –0.5; 4 – e = e = - 191 F12 1.0 1 0.5 2 0.0 1 -0.5 2 -1.0 . 3.26. 0 5 10 ( 15 20 k 25 Ti ) ( ) (1) (2) i = e = –1, = 1, Ln/LB = –0.5, * = 1, Ln/R = 0, k|| = 0 i F12 , F12e , , 2 i k Ti a33 , i F12 . >> 1, - . . 3.26. (k , Ti , 15) , , . - 192 3.5. 3.5.1. ITG( ) , . - ITG- . - , . . . – . . . . , - . . , , . . . , , - 193 . , – , . , . , ( ) , . , - . ), - . , . – (slab), [308, 309] B x e Ls B e || B– , , Ls – e – , e|| , , - , , – . Bz x, (3.68) By , - z x, 1 Ls 1 By . B x (3.69) - 194 - x , , - z y– - x z. , B = Bz, 0. , , By = y - . . , , , , , . , , , z - x=0 y e|| e , - . , k || k|| ky x Ls . ITG- 0. (3.70) , ne~ ne e . k BTe (3.71) - 195 - | i | 1. (3.53) | 1 , Z( i) 1 i 2 3 i 1 3 2 i i | 1, . ITG, - bi ~ 1 . ni~ ni Zie k BTi Zie k BTi *i 2 i *i 2u0 zi i 1 (1 bi ) Ti 1 2 1 *i i (1 2 i 2 1 bi *i bi ) i 1 1 2 i 2 (1 2bi ) . (3.72) , ( x)exp( i t ik y y ) , k|| 0 x k . Ti 1, Ti ( – ) bi 2 Ti 2 x 2 k y2 . (3.73) . (x) d2 d x2 Q ( x, ) 0, (3.74) - 196 - x x 1 k y2 2s A( ) uz s u0 zi , vs , s mi vs , vs qi B k BTe , mi Q( x , ~ ) A(~) 1 , K ~ k yv e u z su s , ( K) B( ) u1 yi v B (~)x C (~) x 2 , , K 1 i C (~ ) (3.75) s2 x 2 ~2 , k yu0 yi , u1 yi , e Ln , Ls s u yi su Lni , Lui u0 yi , u0yi – (x = 0), u0zi – x = 0. ( (x) Q x ( ) 1/ 4 exp x ( ) – , ). Q dx , i (3.76) Q( x , ) . ( 0. - ) x ( ) Q ( x , )dx (l 1 / 2) , x ( ) l– . C 1/ 4 x B 2C (3.77) - 197 - d2 d 2 2l 1 2 l = 0, 1, 2, … – 0, (3.78) , . ITG- [142, 310]. - [310], [142]. ( - ) B2 4C A l (x) (2l 1) C . H l ( ) exp( Hl ( ) – (3.79) 2 / 2) , . A k y2 k y v*e (3.80) 2 s 1 K , B 0, C s2 2 , , k y2 2 s 1 2 i (2l 1) s k y2 2 sK 1 i(2l 1) sK 0, (3.81) - 198 - Im( ~ ) . Re( ~ ) R ITG. 3.27 3.28, . | 3.29. | i -1 -1/2 | i | 1 , . 3.30. 1/ 2 Re C sm (3.80), osc 1/ 2 Im C osc – ( ) . - . 3.31. sm 2 (k y ) 2 s s , (3.82) , ; min sm , osc , s v*e / osc sm [144] - s. l = 0. . 3.32. , - , , –s K. . 3.33. s , K. , s . - - 199 - 0 0.4 l=3 l=0 l=2 -0.4 R/ 0.3 l=1 l=2 l=1 / s -0.8 l=3 s 0.2 l=0 -1.2 -1.6 0.1 0 0.5 . 3.27. ky s 1.0 0 1.5 ( ) 0 0.5 ky s 1.0 1.5 ( ) ITGl K=2 - s = 0.1 0.6 0 s = 0.1 s=3 s = 0.03 -0.5 0.4 R/ s -1.0 s = 0.3 / s=1 s s=1 s = 0.3 0.2 s=3 -1.5 s = 0.1 s = 0.03 -2.0 0 . 3.28. 0.5 ky ( ) K=2 s 1.0 1.5 ( ) 0 0 0.5 ky s (l = 0) 1.0 1.5 s - 200 - 0.3 0.4 0.3 0.2 0.2 0.1 0.1 -20 -20 0.0 -10 0 10 x/ 0.0 -10 0 10 x/ 20 s 20 s -0.1 -0.1 0.3 0.2 0.2 0.1 0.1 -2 0 -20 -10 0 10 x/ -1 0 0.0 0 10 0 10 x/ s 20 -0.1 20 s -0.2 -0.1 -0.3 0.4 0.4 0.3 0.2 0.2 0.1 -20 -20 -10 0.0 0 10 x/ 0.0 -10 20 x/ 20 s -0.2 s -0.1 -0.4 -0.2 . 3.29. : – – – – Re( ), – - – - – – Im( ), ––– – K = 4, s = 0.1. l = 0; – ky s – ky s = 0.1, l = 0; = 0.5, l = 1; – ky s – ky s = 0.5, l = 0; = 0.5, l = 2; – ky s – ky = 0.5, l = 3 . s = 0.8, - 201 1.6 1.4 1.2 | i -1 -1/2 | 1.0 0.8 3 5 7 0.6 4 0.4 0.2 2 0.0 0.0 . 3.30. | i 0.5 -1 –1/2 | ky 6 1 1.0 1.5 s : 1 – s = 0.01, K = 2; 2 – s = 0.01, K = 4; 3 – s = 0.1, K = 2; 4 – s = 0.1, K = 4; 5 – s = 0.3, K = 4; 6 – s = 0.3, K = 8; 7 – s = 1, K = 16 8 s = 0.1 s = 0.03 6 / s = 0.3 s = 0.03 s 4 s = 0.1 s=1 s = 0.3 2 s=3 s=1 s=3 0 0 0.5 . 3.31. ky 1.0 (l = 0) , osc – 1.5 s s K = 2: sm – - 202 - s = 0.03 0.8 s = 0.1 0.6 s = 0.3 s=1 0.4 s=3 0.2 0 0 0.5 . 3.32. ky 1.0 1.5 s s K=2 3 max 1 s = 10-3 s=1 s = 10-2 0.5 s = 0.3 0.3 s = 0.1 0.1 0.5 1 . 3.33. K 5 10 K s - 203 - . , , , , - . : D max max k BTe , LN eB s (3.83) – . , K max max 0.35 K s. s( . . 3.33) 0.1 . 3.5.2. , , - , [311] u y,z – u 0 y , z exp x2 2 2 , (3.84) . . 3.34 3.35 - - 204 . . ~ 0.1 E 1 Ti v*e ~ u / L ~ 0.1 ITG[303]. 1 Ti v*e ), , | E| > (L – - , 0.4 / - L 10 Ti. s 0.3 2 0.2 1 4 0.1 6 5 3 0 -2 -1 0 1 u0y/ 2 *e . 3.34. : 1 – s = 0.1, K = 4, ky s = 0.5, = 10 s; 3 – s = 0.1, K = 4, ky 0.8, ky s s = 0.1, = 3 s; 5 – s = 0.01, K = 4, ky = 0.5, =3 s = 3 s; 2 – s = 0.1, K = 4, ky s s = 0.5, = 3 s; 4 – s = 0.1, K = 4, ky = 0.5, s = = 3 s; 6 – s = 0.01, K = 2, - 205 / s 1 3 0.3 0.2 4 0.1 2 0 -3 -2 -1 0 1 u0zLNi/( 2 s s) 3 . 3.35. : 1 – s = 0.1, K = 4, ky 0.1, K = 4, ky s ––––– – =3 s = 0.5; 2 – s = 0.1, K = 4, ky = 0.8; 4 – s = 0.01, K = 4, ky s s = 0.1; 3 – s = = 0.5. –––––– – = 10 s, s , ITG- . , [303] ITG- u / vTi ~ 10 2 u|| / vTi ~ 0.2 , , - (3.85) (3.86) - 206 u u|| – , u u|| – - . : Te ITG|s| < 0.1, i Ti , 2–4. , [303] , » x , u|| . , [140], u « - [140]. , , (3.85), (3.86) , - . u , , (3.85), , , . u|| ~ vTi , . - , (3.85), (3.86). , ( ITG- , ), - , - , - [140]. , [312]. - - 207 3.5.3. Er B, . B Er VE Er B- , Er / B . , - . 3.36, x , VE - – . . VE [313–318]. , [316, 317]. , [319]. - . , , [315]. , | - k yVE | – VE0. ( ) k||vTi , , (3.87) - 208 - VE VE VE0 0 – . 3.36. 0 x E B- , ky , Ti 1, | | ci , , Ti – ci – . d2 dx 2 Q( x , ) Q ( x, ) k y2 0, (3.88) VE'' ( x) . / k y VE ( x ) (3.89) (3.88) (3.89), Q(x, ), - [320], . (3.88) . - 209 - R Re( k yVE 0 k y VE ) = Im( ) - . 3.37. VE / . 0 . 3.38 , Q ky , . 3.39 x. - 1 2 . - ky , - (k y ) min ~ 1 , ky , (k y ) min . - VE ( x ) ky (k y ) min ; max ~ 0. . 3.37 , (x=0). , x=0 (k y ) min x0, , max – ( . . 3.40). ( ) : D ~ 1 c1 ~ 2 1 c2 ~ k y2 D [160]. 2 [144]. - D . ( ky ) 1 c1 1 c2 , , , D ~( 2 k y2 ) 1 . (3.90) - 210 - / R 16 0 12 1.2 8 0.8 4 0.4 0 0 0 / 1.6 5 10 ky 15 . 3.37. 0 0 5 ( ) l = 1 (– – – – –) 2.0 10 ky ( ) l = 0 (–––––––), l = 2 (– - – - – - –) | | 1.6 1.2 0.8 0.4 0 -2 . 3.38. -1 0 1 x/ . l– 2 . 15 . 3.37, ky = 6 - 211 Q Im(Q) 40 0 Re(Q) -40 -80 -1.0 -0.5 0 0.5 1.0 x/ . 3.39. Q max/ l = 0, ky = 6 0 1.6 1.2 0.8 0.4 0 0 0.2 0.4 0.6 0.8 1.0 x 0/ . 3.40. . l– . . 3.37, ky = 6 - 212 - , , , . - ~ 0,1 . k y ~ 10 , ~ 0.1 - 0, D ~ 10 3 VE . (3.91) , - ~ D ), ( , VE / D ~ 103 . , , . , , , , [234]. - . , , . , . ~ 0.1 V/ ~ 0.1dV/dx, . V– - - 213 [321], [322]. - [323]. ( ) [324]. , [325] - , , , . s = dV/dx , - . , . - , – . ITG- s 0.1 s / ~ 10 . , . s , . (1.42), - (3.91). . 3.6. , . , . - - 214 , . 1) , , - , ITG- , , – ETG- . k|| = 0 , - . k||m, L < /k||m ( ). , . k|| = 0, . . 2) k|| , k|| , ~ 1 k|| = 0 - . 3) , ( R > 0) ( ) ( R . - < 0) ( k|| e < 0). - R . 4) . B = Ln/LB : B > 1, – - 215 - 0 B ~ 1, – 0 B ~ 1. - ~1 . , - . . , . k Ti > 1. k Te ~ 1. 5) - ( ), . - , , . [256, 257]. ( « 0.14 cr ») [106, 256, 257]. - ( i, - e, .) B . , 1/ Ti ETG- k ~ 1/ ~1 - Te . , . ETG- 1 , [96, . . 15.4], | e| < 1 k Te << - , (3.18). - - 216 - B . = Ln/LB , , - ~1 B | e| < 1. (3.5), e , 1 - [267]. , , . , , . – ) = Ln/LB . [326, 327] . - 217 4. 4.1. , , ( – ), , . - , , ( [132]). ., - k. - . , , - . k , - k . , , , - , - . - , . , . , , , , , . - . - - 218 , . ( , - ), . , - . . , , , , - . , . , . - [237, 238]. , , , - , , - [328]. , , , . , - , - . , . - x z . . x z - y - - 219 ( 3 , z - ). , , n vx , Q 3 k BT n v x 2 3 nk B T v x 2 vx – n, T ( ) (4.1) 3 n T k BT 1 2 T n , (4.2) , - , . (4.2) , , 3 k BT 2 , - . , n T T n n T T n . i Zi e i Zi – . . e i , - (4.3) - 220 a Ln. a << Ln - . a ~ Ln. - [245, 246]. . - . , - . a << Ln. . , - . , , 3. , . , - ( ) . , , - , , . . , - - 221 . , - , . ITER [130], - ( ) ITG- ETG- - . - (ELM, edge localized modes), ELM [130]. : [130]. , . , , , - . ~1 , , . B 0 - , , - [228, 229]. B 0 - . B , 0, , , , . - . B, , - - 222 . , , . . 1.3, . - , k . . 4.1 - , . : 1/ L 1/ Ti ~ k ~ 1/ Te , Ti Te k ~ 1/ – Ti - ( ); L – 1/ k . Te k ~ 1 / rD , ( rD – - ) . k ~ 1/L , - . , ITG 0 L–1 SWITG TEM ETG –1 Ti Te k . 4.1. –1 rD–1 - 223 - 1/ L k ~ 1/ ( Ti ) - . ITG, . , . , 1/ , ETG- - k ~ 1/ Ti Te , . - 1/ Ti k 1/ Te . - ITG(SWITG, short wave ITG). - (TEM, trapped electron mode) . - (1.38) : D D k 0 2 D 1 ( s 0 / ) 2 . (4.4) – - [161], k – ( ) , s – - . (4.4) , , , - 224 . , , . . 4.2. . . , . - , ( ) ( ., - , [110, 329–331]). , , - , . , . B z, y, E(x) » X x. X ( y, t ) x x x = x0. y t x x0 X ( y, t ) . (4.5) - 225 . ( ). n~ ~ X. . n~ , , [332] n~ ~ X. (4.6) , Ti , ci , - ci , Ti . ( , ) , . (4.6) - X ( y, t ) , - . , x - , ky. 1/ n~ t n~ V(X ) y (4.7) 2 ~ D n y 2 V (x ) n~ , (4.8) y; D , . - 226 (4.8) (4.7) x. . , , D, , D . n~ . , - . , ) (4.8). - , E B V ( x) . E ( x) / B - . . V ( x ) V0 V0 s (x x0 ) , x = x0; (4.9) , s . , , , . , V0, . V0 0. - - 227 (4.5), (4.6) (4.9) (4.8) , X t sX X y , D 2 X y 2 X. (4.10) ( ky ) X0. - , k y. (4.10) , [333], . , [334]. , (4.28) [335]. [336]. (4.28) (4.28) , ( [337]. ) [333], - [338, § 101]. , (4.10) - . , . (4.10), 0, D 0, - s s 0, - 228 - 0 s – s X y s –y. - , , sX ( X / y) ( D 2 X / y 2 ). ( s 0) (4.10) D ky 2 D0 (1.42) D0 , ky 2 (4.11) , 0. s 0 s D - D0 , D , D0 , . 0 s D . . - D - D , 0. , D . , D / D0 X m2 X m2 / X m2 0 , X m2 0 s s 0, . - (4.12) - 229 (4.10) , D - . - D ) ( - . - D D, - (4.12). (D 0) D 0 , D 10 2 D . 1 : , , Xm0, D0. , - . . 4.2 4.8 3. . 4.2 4.4 . 1.5 . 1.6. . 4.7 4.9. 4.2 4.4, . ( 0 . . 4.5, 4.6) 1, D - D 3. . NL, 0 0,45 , D 3 NL 5, 3 D D D . D D s 1. - 230 - D D D , (1.42). X m2 D , D 10%. , D , D s, X m2 , D , , D . D , - s. , - , . 3. s D s/ 0/ NL X m2 / X m2 0 X m2 / X m2 0 D 1 D D /D 0 (5) D 0 0 1 0.5 0.090 20 0.80 3.8 0.80 1 0.22 12 0.48 0.96 0.50 1.5 0.31 6.5 0.29 0.43 0.31 2 0.36 5.0 0.18 0.24 0.20 3 0.40 5.0 0.090 0.11 0.10 5 0.44 5.0 0.037 0.038 0.038 10 0.45 5.0 0.0095 0.0098 0.0099 - 231 - X/Xm0 3 0.5 4 0.4 2 0.3 0.2 1 0.1 0 -0.1 -0.2 -0.3 -0.4 -0.5 0 kyy . 4.2. :1 D D , s/ t = 3; 2 2 5; 3 7; 4 20. = 1.5, - X 0 / X m 0 10 2 1.5 X/Xm0 2 1 1 0.5 7 0 8 -0.5 -1 -1.5 0 kyy . 4.3. :1 0.3; 5 0.5; 6 1; 7 2; 8 5. D t = 0; 2 2 0.1; 3 D , s/ = 10 ( X 0 / X m 0 10 0.2; 4 2 ) - 232 - X/Xm0 0.6 5 6 4 0.4 3 2 0.2 1 0 -0.2 -0.4 -0.6 0 . 4.4. :1 5 6; 6 20. D 10 lg(Xm/Xm0) 2 kyy 2 t = 2; 2 3; 3 4; 4 5; :1 s/ 2 D , s/ = 1.5, X 0 / X m 0 10 0 1 -0.2 2 -0.4 3 -0.6 4 -0.8 -1 -1.2 -1.4 -1.6 -1.8 -2 0 5 . 4.5. = 1; 2 2; 3 3; 4 5. D D 10 t 15 - 233 0.5 lg(Xm/Xm0) 1 2 0 3 4 -0.5 5 -1 -1.5 -2 0 5 10 t 15 . 4.6. :1 = 0.5; 2 1; 3 X/Xm0 2; 4 3; 5 5. D 10 2 s/ D 1 2 0.8 3 4 1 0.6 5 0.4 0.2 7 0 6 -0.2 -0.4 -0.6 -0.8 -1 0 . 4.7. :1 6 5. D D s/ = 0; 2 kyy 2 0.5; 3 1; 4 2; 5 3; - 234 - X/Xm0 2 1.5 1 1 2 0.5 3 0 4 -0.5 5 -1 -1.5 -2 0 . 4.8. :1 D 10 2 2 kyy s/ = 0.5; 2 1; 3 2; 4 3; 5 5. D x = x0. ) V ( x) , 2 2x 2 X m0 , (4.13) , s ; - . 2 (4.10) , (4.13) - 235 - X t 2 X2 X X m0 y 2 D X y2 X. (4.14) (4.14) , - (4.10), . 4.9 4.12 4. 4. 2 2/ X m2 / X m2 0 D D X m2 / X m2 0 D 0 1 0.3 0.96 0.5 0.89 1 0.75 1.90 1.5 0.63 1.26 2 0.54 0.94 3 0.41 0.62 4 0.33 0.46 5 0.28 0.37 6 0.24 0.31 8 0.19 0.23 10 0.17 0.19 12 0.14 0.16 D - 236 - X/Xm0 1 0.8 0.6 2 3 4 1 5 0.4 0.2 0 7 6 -0.2 -0.4 -0.6 -0.8 -1 0 kyy . 4.9. :1 5 3; 6 5; 7 X/Xm0 10. D 2/ = 0.3; 2 2 0.5; 3 1; 4 2; D 1 0.8 0.6 0.4 1 2 3 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 0 . 4.10. kyy :1 2/ = 3; 2 5; 3 2 10. D 10 2 D - 237 - lg(Xm/Xm0) 0 -0.2 -0.4 -0.6 1 -0.8 2 3 -1 4 -1.2 -1.4 -1.6 -1.8 -2 0 5 10 t 15 . 4.11. :1 = 2; 2 3; 3 lg(Xm/Xm0) 5; 4 10. D 2/ D 0 -0.2 -0.4 -0.6 1 -0.8 2 3 -1 -1.2 -1.4 -1.6 -1.8 -2 0 5 10 . 4.12. t 15 :1 = 3; 2 5; 3 10. D 10 2 D 2 - 238 - D , 2 0 D D 1 0,45 , NL D D , 2 D0 / | 2 3. 2 2 D |. . 1. . , , . , - . , NL V(x)). , ~ 5/ ( - , . , kk , 2 k . (4.15) , - , , - . 2. . , y . - - 239 , y y 0 X=0 /ky . [334]. y ( ky), , , , , . (4.15). (4.15) , , . D, - (4.8), D . - . D D D k y, D Dmax . Dmax , , , , D D. Dmax , D. , , D , ( D Dmax ) - . 3. . , - ( - - 240 - D ), , , D i E B . , , D i D e. . e , , . 4. . . , . - , . - . 4.3. , . - [132]. n a : - 241 - , n| | n n n a a Ln (4.16) 1/ - a << Ln. a. a2 . D , k ~ 1/ Ti (4.17) , (ITG- , ) D 2 k . (4.18) a , n n . 1 . k Ln , . k (4.19) (4.19) - [339, 340]. a k . - 242 - n vx , (4.20) k vx – , x – , vx n k . (ITG- ) E B v xi Ey v xe Ey / B k /B, (4.21) – . , , 2.3.2, (4.21) (1/k - ). ITG- ne / ne /( k B Te ) , ni / ni – , i,e k Ti qi ETG- /(k B Ti ) . 0 5–10 ( ( ne / n e ni = ne = n e . . 3.3.5). ni / ni ) Ti = Te = T, qi = e, - 243 - k , k T k B eB n n 2 n. (4.22) (4.22) ; . (4.22) . k 1/ k Ti 1/ Te . k . 2.3, 1/ 1/ Ti , , Ti , - . , ( , - ), ( ). (4.22) k –3 , S (k ) , ( n / n) 2 , - (4.19). . 4.2, k - D k 2 . - (4.22) D k T k Ln B eB n n 2 . , S (k ) n n 2 (k ) k3 eB . k B TLn (4.23) - 244 - C C – Ln/R, k BT , eBLn Ti (4.24) , i, e, . k C (k ~ 1/ , . ITG- Ti ) C ~ 0.1. . ~1 , k >> 1/ Ti ( . . 3.4). (4.24) S (k ) k > 1/ , ETG- k C 2 3 Ti Ln k . (4.25) ITG- Ti –3 . , , k >> 1/ Ti , [307]. ( . , . 2.3.2). k , k >> 1/ Ti –3 , . ETG, ETG(4.23), . , - - 245 ITG- , ( n / n) 2 S (k ) = 3.5 [132] k , (4.26) 0.5. , (k << 1/ Ti). . , D Bohm C Bohm k B Te , eB CBohm (4.27) Ln (4.18) 1/ k (4.27) 1/16. - Ti : a C Bohm Ln k 1 Ln . 4 k (4.28) [132], k << 1/ . Ti ITGk ~ 1/ Ti. (4.18) (4.24) - 246 - D Ti C Ln k BT , eB (4.29) C ~ 0.1. (4.29) - , . (4.26). (1 / ETG- Ti k 1/ Te ), , . 2.3.2. , D ~ a2 ci . , ETG- D ~ a2 ~ 2 Ti / 2 Ti ~ . ci , , ITG- - . . , - , , . Ti, , , , ITG- , - . . , . - 247 , - . - k n k an / Ln . , , . C k BT k eB Ti C k BT , eBLn Ti (4.30) , , - (4.16). a (4.30) k – ITG- 1/ k Ti 1/ 1/ k , S (k ) C /C Te . ~ 1/ Ti , k Ti C /(k C ) . , – ETG- a 1 /( k k Ti ) . - Ti k 4 . , , . , . - , . , , , , , , . , , , , , - . - 248 ak k da k dt k k ak : ak [a k ] NL , (a k ) – (4.31) , [ak]NL – - . . [341], , 2 1 /( k s a k ) , s – - . 1 /( k 2 Dk ) , sat ak 2 Dk . - . , . , , , . , Dk - , . , da k dt k ak k 2 Dk a k k s a k2 k - 2 s ak . (4.32) - 249 - , , , . Dk (4.32), k 2 - k ka k2 , k a k2 , . a k2 k (4.28), 1/ k . 1/ - Ti . k 1/ , Ti . . , , . , s1 3 T kB 2 T kB n n kB 3 2 - , 1 n , n T n n T n T . T n , 2 / 3, , ( 1) 5 / 3 . , . , . , s , kB 2 n n . , - , n s t kBn n n 2 , (4.33) - 250 - – . , . - ( / T )D n kB n) 2 D ( kB n – D n L2n . (4.34) . (4.33) (4.34), 2 2 k – - 2 n n D L2n 1 (k Ln ) 2 (1 . (4.35) 2 s / 2 ) , (4.36) . 2 1 ( k Ln ) 2 2 2 (4.37) - 251 - 2 ( k Ln ) 2 2 , 2 2 . (4.38) 2 (4.36–4.38), (4.19) (4.23) , , k , . ( s ) 2 (k v* < ~ 1 /(k Ln ) . ITG- C1 k v* , Ti) k B T /(eB) – C1 ~ 0.1 , . - L* 2 ( k Ln ) 2 1 1 /(C1 k L* ) 2 1 v* / C1 L* Ln s L** v* / 2 . 2 , (4.39) – 2 2C1 L** k L2n (4.39) 2C1 L** . Ln (4.40) (4.40) , . . a , k min 1 / Ln . Ln , - - 252 - k max ~ 1 / L* . k ( L* , L** max ) ~ 1 / L** . - , - , – . - , GAMMA-10 [124, 125], . Ln : 10 1 10 a, 2 C1 - Ln /L* 1 10 0.1 , . ( ), (4.39) C1 L* / Ln 10 1 10 2 . 4.3. , , . , - , , . , - . . - - 253 , , . - , , . - , . , , , - ., - , , . ( ( ), . ) . , ( , , , ). - [342]. [342] . [343, 344] . , , , .). - , . - ( ), . - 254 [345]. - , , , , . , , , ( . , ) , , - , . . , , - , , . , , , . , - ( ). , . const ( – ), u . , , - . - - 255 . , . , , - . ( = i, e): ( D ( m n (u n T ) )u || k BT 1 n F || || p ) m (u || ) 2 2 1 Z eU u || ) , (4.43) h0 ( en e u e , ), (4.45) (4.46) i 0. (4.47) i ,e – ( (4.42) (4.44) Z i eni u i Z n 0 sT , E , B j 0 (4.41) T q n E|| m (u ) 2 2 B sn , kBn V p Z en B u 1 n V ; B E U – - 256 - ; U – p n k BT , u j ; m , Z , n , T, Z en u – , , , , ; ; h0 ( )– ; sN – ;D , , ; V , ; – - – - ; F || – sT – , , , ; - || , - . , ( , const , r - const ) n , T , p , u || , u , U . (4.41)–(4.43) – , - . (4.47) s ne Z i s ni . - , - i (4.41) , , . ( ), D e = D i (D i , – ). , (4.41) , n F || ( u || ) . - 257 ( ), - kBn ( 1) m n D D , (4.48) . (4.49) (4.44) , - . (4.45) ( ) - . (4.50) 1. , 3 ( - ), 1 . k B T ln n n * m (u || ) 2 2 m (u ) 2 2 Z eU h0 ( ) , (4.50) . , , . , , , dh0 . T (dS dS int ) T dS int , - , (4.51) - 258 - S – ( ) - ; dS int – - ; , , - [346]. – , 0. (4.51) dS , . h0 , , , , dPw n dh0 (4.52) , ( - ). , , Pw - . n T – 1 dh0 dt T 1 h0 , (4.53) . , , . - - 259 (4.41)–(4.53) ( ); (sn ), (F ||); (sT ) - (D ). D - , , , , , , . . - , , ( ). , , , . , . , . - , . . , . 4.13 - 4.14. - << 1. ( ) , . - ( ), - . , . - - 260 , . . - . 4.13 , ( . 4.14 ), ( . 4.14 ), ( . 4.14 ). . 4.14 - vs . ne/ne* q(r) T, 1.0 10 0.10 0.8 8 0.08 6 0.06 4 0.04 2 0.02 ne/ne* 0.6 Ti 0.2 0.0 0.0 0.2 0.4 0.6 Pwe, 10 u u 1 0.00 0.0 0 1.0 0.8 u, 0 3 q(r) 2 Te 0.4 4 0.2 0.4 0.6 0.8 3 0 1.0 Er, 0 e i 200 -10 Er -20 u||e -30 -10 100 1.5pe Pwe -40 -50 -60 0.0 0.2 . 4.13. 0.4 0.6 0.8 1.0 0 0.0 0.2 0.4 r 0.6 0.8 -20 1.0 - - 261 ne/ne* q(r) T, 1.0 0.8 ne/ne* 0.6 10 0.10 8 0.08 6 0.06 4 0.04 2 0.02 8 6 q(r) Te 0.4 Ti 0.2 0.0 0.0 0.2 0.4 0.6 0 1.0 0.8 0.00 0.0 0.2 0.8 0 1.0 0.6 0.8 1.0 0.6 0.8 1.0 0.4 0.6 30 vs 600 20 u||i 400 10 200 0 0 -10 Pwe, 2 u, u, 800 -200 0.0 4 u||e 0.2 0.4 0.6 0.8 3 1.0 1.0 0 e u -20 0.0 D /D Er, u 0.2 0.4 0.2 0.4 i 0 0.8 200 1.5pe Er0 -20 Pwe 100 0.6 0.4 Er -40 0.2 0 0.0 0.2 0.4 0.6 0.8 -60 1.0 0.0 0.0 . 4.14. r , .D ,D – 0 – - 262 , , , - , . p n T p* n* T* 1 . - (4.54) 3, , . p* , n * (4.54) T* . (4.44) p (4.46), p r p j Bz B02 2 0 B2 2 0 1 jz B 0 1 a 0 r Bz Bz z B2 dr , r (4.55) (4.56) ( ( pe Br rBr . r r B0 – B pi B r = a). - - 263 - j z) , B Bz B Bz B0 1 1 Bz0 1 2 1 Bz , (4.57) 1 0p B02 2 B02 a r , (4.58) , (4.59) B2 dr . r (4.60) B q(r ) A>1– Bz r , B aA . (4.61) A = 3, . (r) q(r) . 4.13 Pwi = 0, 4.14 . . , . , Pwe - . 4.13 , - 4.14 , 1.5 pe . - 264 . 4.13 4.14 Er. Er0 4.14 . . , , - , , - . . , . - , . , - . , , . , , . , - Pwi = 0 Pwe > 0, . , . . - Pwe , Pwi - , , - Pwe . - - 265 , - , . 4.4. . - , ( - ) - , , . , - . , . - . , . - , . - 266 5. , (1.5)–(1.7). , , , , , . , . - . . . , , , - . - . , . , , – (FRC). , , - . FRC - - 267 . . - , , . , , - . , , , - . , . . , . 5.1. 5.1.1. (FRC) FRC - (FRC) , [347], . , D–3He- , . , - 268 FRC, . FRC , ( 1.3). . . . FRC . , r–z, ), , . - FRC [29]. [27–29, 348–357] , FRC- - : a 0.15 , Be T = Ti + Te – 400 0.5 (Ti – , Te ), 0.5 s N. Te/Ti 0.5–1, , , . - E Te/Ti ~ 0.1. , , L- , - . FRC, , : Be 1 ,a 0.2 , Ti Te 1 [29, 351, 354, 355, 357]. FRC . C-2 , [357, 358]. FRC (IPA, Inductive Plasma Accelerator) [359, 360]. [361, 362]. TS-3 and TS-4 - - 269 – , , ( ) . - , ) . FRC . [363]. - FRC [29]. TCS [364–366]. FIX [367–369]. ( ) TS-3 - TS-4 [362]. FRC. FRC ( ). FRC [370, 371]. - FRC - [343]. FRC [29]. , . . FRC - 270 [372–374]. [375]. ( ) [376–378]. FRC - , . , 14 ( first orbit losses) Bea > 15 , 3.5 ( – Bea > 5.5 [375]. ) [379] [380]. [381]. FRC [382–387] ( ). p( ) . , FRC. - [343] - . , , , FRC [344, 354, 362, 388, 389]. E B [110], , , . FRC , - 271 . - , - . FRC [390, 391] FRC , . [392] FRC NIMROD, . FRC - . , FRC, . - . , FRC- [358, 393–395]. - [362]. [396] . . . [27] - , - , FRC. FRC, , . [397], , . , , - . - - 272 [398]. , , , , - , . , - , . [399]. Tilt- - [400]. tilt[401], [402], [403]. , [403, 404], [405]. FRC, , . , FRC. , [406–408]. , [409], FRC. (LHD) FRC [408, 410–412] ( [108]), , . ,– - FRC. FRC [412–414]. FRC- - 273 [412], TRX-2. , , . - LHD- , . TRX-2 10–300 6 - : Te = 100 , Be = 0.6–1 , Ti = 150–400 , Bs , a = 4– 0.6Be, 0.6 [412]. LHD. 10–40 , . . - ne/ne ~ 10–3. ( ) ne/ne < 10–4. . LHD- - , - ~ 10–2. , - [413, 414]. LHD- - , , [264, . 265] LHD- FRC. k|| = 0, * = 1.5–2, Te = Ti, Ln ~ : [265]: k ~ 1/ , ETG- k || Ln ~ 4 [264]. k Te , ~ ci. k|| [266] 1/ FRC Te - Ti 0 - Ln ~ Ti. - k|| 0. , Ln ~ Ti - 274 . [415, 416] ~ ( ci, . ) 0.3 ci. FRC - , ( ci = ). [417] FRC ~ ci . , FRC- - LTe Ln, LTi >> Ln, e Ln / LTe ~ 1 , Ln / LTi i 1. , ETG- . FRC [267]. ~1 , 3.4. , - , . , FRC ETG- [305]. FRC B ~ 1 ( ~ 1) B ~1 k Ti , R ~1 k|| , ~ 1. k|| - 275 =0 ( R ). =0 k|| = 0 . 2 k D 1/ k 2 . - , Ti. . 5.1. , , 0 k B Ti /(eBe Ln Ti ) . - D0 / 2 Ti 0 0 0.12 k B Ti . Ln eBe Ti 3 4 2 k –1 10 –2 /D0 1 10–2 0.08 2 2 10–3 3 4 0.04 1 5 10–4 5 0 0 10 20 . 5.1. 5 30 40 k Ti 10–5 50 0 10 = Im( ) ( R 1 3 4 20 30 40 k ) k|| = 0 ( ) ( ): 1 – = 1, 0.6, = 0.6; 2 – = 0.6; 4 – = 0.6 e e = 2, = 2, i 50 ) = Re( ) ( 2, Ti i = 2, = 1.5, = 1, = 1, = 0.3; 3 – = 0.6; 5 – e e e = 2, = 1.5, i = 2, i i = 2, = 2, = = = 1, - 276 [267] FRC , ETG- 0.8. < > 0.8 , - , FRC . 0.5 - FRC. FRC 0.4. 0.8 . 0.1 2 Ti D k ( 0.1C D C – , 0.4 1) - k BT , Ln eB Ti (5.1) (C 0.8). , D Ti k BT . eBL n Ti (5.1) anom , ( ) . - ( ,D D cl. ) anom >> D cl, D D anom . , - , - . FRC > 0.8. - 277 , , - FRC. . > 0.8 , < 0.8, - . . , , , , , . FRC- , 1, , [415, 416]. - . , - . , . , , . ( . , , ) - 278 , - , . , . 5.1.2. [418] FRC, - , [348– 356]. , FRC. ( = N ) E , , – a, ) B0 T = Ti + Te. , Ti Te, T Ti Ti 2Te, Te. . LSX (large s experiment) [351, 352] a s r0 rdr , a i (5.2) - 279 - i – ( , , - ), r0 – ,a– . s , . , LSX, [351] N, E ( , ). - LSX a 2.5 B01.5T 0.75 . (5.3) [206] , - , a, B0 T. [250] - . , . , [250] , Bohm 10a 2 B0T 1 . (5.4) - 280 - a– T– . , B0 – , (5.4) [348–356] . 5.2 , exp – , - . , (5.4), , - , , , , . . , , FRC , [370, 371]. (ITG) , - . 2 D – , (5.5) . : a2 . D (5.6) , ( . (5.1)). - 281 - 1000 1000 ( exp ) ( exp ) 100 100 10 10 100 Bohm 10 10 1000 a2B0T –1 ( ) gyro–Bohm 1000 ( exp 100 a3B02T –3/2 ( 1000 ) 1000 ) ( 100 exp ) 100 10 10 100 aT global –1/2 1000 ( 10 10 100 ) corr . 5.2. 3/2 a T 1000 –1/2 ( ) : – , » – , –« », –« - - 282 , ITG- - , v*e s; s 1 : ; s mi k B Te – eB ; v*e ; L , - k BTe – eBL a – . k BTe . L eB s D gyro Bohm 4 10 3 a 3 B02 T (5.7) 3/ 2 . (5.8) (5.8) . 5.2 . , k ~ 1/ . 5.2 , , , Ti. . - , in Bohm gyro Bohm 200a 2.5 B01.5T 1.25 . (5.9) , - - 283 . , - , FRC. . k 2 i2 2R , k|| 2k BTe / me [298]: me – , k R k BTe – eBL , k i , k|| k|| 0. – - k . - k|| - , . , k|| 1 - a 1. 2.5 10 global k|| , k i 2 aT 1/ 2 . (5.10) 1 (5.4). , (5.10) [224]. - , D – r2 , (5.11) . - 284 - , v*e . k BTe , eBv*e r , (5.6) (5.10). s (5.10) . 5.2 . , « corr » 2 3/ 2 9 10 a T 1/ 2 ( . . 5.2 ) . (5.12) , (5.10) (5.12) . , , B0, - , ( ). , - FRC. (5.10) (5.12) - , . - , , . (5.4) (5.10) Bohm global gyro Bohm (5.8), - . (5.8). (5.8) s, , - - 285 [351, 352], Ln / FRC. - a/ Ti Ti 8sa 2 B0 T - k BTe . seB D gyro Bohm s, 1 0.8s Bohm . (5.13) (5.13) s [351] . 5.3. (5.13) s s 1.2–1.3, , . exp/(0.8 Bohm) 5 4 3 2 1 0 . 5.3. 1 2 s 3 4 5 s - 286 - . . - , , , - . , L- - . , FRC , , , , L. , , L- - , - , [419]. FRC - , , , ( - s). - s, [351, 352]. , , - s~1 , - s. , ITG. ITG- - , . D k 2 . k s, v*e s 1 - 287 ITG- - (5.8) . 5.1.3. - , , , , - . , - FRC, . , - . FRC. , , , . - , , . - , . . > 0.8 , , - . - - 288 . , , . - . , , . . , , . FRC , , , . D , (5.6), , - . Ln. , , , . - . , . . - - 289 FRC , . . FRC [390, 391]. , , n t , 1 rD r r n r , sn n . (5.14) sn – , – - ; ( ). : 3 ni k BTi t 2 3 nek BTe t 2 sTi sTe – 1 (rJ i ) r r 1 (rJ e ) r r sTi sTe Pi e , Pi e Pb (5.15) Ps . (5.16) i - . (1.7). (1.6)– - - 290 - 3 k B Ti 2 Ji ni , Je r D 3 k B Te 2 D ne . r FRC, - (5.14)–(5.16) - . , . - [420, 421]. . , . : p / p0 p0, n0 0, p / p0 T0 – (n / n0 ) 1 , T / T0 (n / n0 ) , , ( , ), 1–2. FRC , - r, z. - (z = 0) B2 p 2 0 Be2 . 2 0 (5.17) [422] , - - 291 . ) - : B1 B2 cBe u , (5.18) 1 cBe (u u 3 ) , 2 (5.19) cBe u 3 , (5.20) B3 2r 2 / a 2 1 , c u r < a (a – 1 s , p s / p 0 , ps s s – - . r>a B B e 1 (1 c) exp (r a ) / 1–3, , (5.21) (5.18)–(5.21), - : a 1 c , 4c a 1 c , 8c a 1 c . 12c 1 , «rigid rotor», , . , . 5.4 3– 2– - 1–3 . - 292 - . 5.4. ( ), ( ) ( ) 1–3 FRC . r 1 r r r – Br – 2 z 0r 2 2 dp , d (5.22) , 1 , Bz r z 1 , r r dp/d c , (5.18)–(5.21). (r) . B(r) p(r) p( ). - - 293 - dp/d , , . , - p( ) (r, z), . - . = 0. = w = const, . , , . – . rw - rwp. d /dz = 0 (Br = 0). (z = 0) - . , , [423]. , - , – . , FRC. , (5.14)–(5.16), (5.22), - . n(r) Ti(r) Te(r) . n(r), Ti(r) B(r) - (r) Te(r) , (r, z) . , - - 294 , - . - (5.18)–(5.21). , , - [424]. , , = 2, . - FRC (5.18)–(5.21) - . 5.5. . 5.6. , , - s. . 5.7. s FRC - , . , FRC , , . . . , FRC , , a > rwp. [425, 426], FRC. - - 295 - . 5.5. FRC = 0.5, a/rw = 0.9. 1–3 s - 296 - . 5.6. FRC 0.5 a/rw = 0.8 ( ), 0.7 ( ) 0.55 ( ) 3 s = - 297 - . 5.7. FRC 0.9 s = 0.3 ( ) 3 a/rw = 0.7 ( ) . 5.8 , FRC. - n (5.14), (5.22) : ) n0 = 2.5 1021 ( T0 = 1 ; Be = 1 ; –3 - 1. , . , - - 298 [412–414] , , . . 5.9. . 5.8, 5.9. - , (5.14) sn = 0. . , - , 1 ndV D ( n) s dF , (5.23) D – ( , n)s – , V F . , : D a2 , n Ln , Ln – 2n s a , <n> – , ns – . (5.24) - - 299 - . 5.8. FRC 1 2 ( ) D = 10 t = 100 2 ( ) ( ): 1 – 50 ,2– ( ) D = - 300 - . 5.9. D =1 1– ,2– 2 ( ) D = 10 2 ( ): - 301 - Ln L0 / D || , L0 – , . , || – - || Ln a ii. ~ 3 ||. n 2n s s || Ln , L0 n 2n s 0.5, 2 || Ln . L0 - FRC, Ln/a 0.1 0.1. L0 ~ Ln. ||. << || , , L0 ~ i. || << - . - , (5.18)–(5.21). L0 >> i . , ~ 3 ||, L0 ~ i ~ Ln. Ln/L0 , - FRC. ||eff L0 i. || Ln / L0 . || << , . , L0 i. - - 302 - , / . 5.10. / ||eff a/Ln ||eff. - . 5.11–5.13 , s. , ( . / ||eff . 5.10), ( – ). . k( ||eff )s , / k s– . , =2 : k = 0.2, s = 0.53 ||eff / 0.1 0.1 k = 0.3, s = 0.7 ||eff / 1. 10 1 0.1 1 –2 10 10–3 0.1 . 5.10. 2 1 10 102 3 103 / ||eff / ||eff: 1, 2, 3 – (5.18)–(5.20) - - 303 10 1 0.1 1 10–2 2 3 10–3 –2 10 0.1 . 5.11. s: 1 s 1, 2, 3 – . . 5.10 103 / 3 2 1 ||eff 102 10 1 0.1 –2 10 . 5.12. / ||eff 0.1 1 s s: 1, 2, 3 – . . 5.10 - 304 103 a/Ln 102 10 1 0.1 10–2 0.1 1 s . 5.13. a/Ln s: 1, 2, 3 – . - . 5.10 FRC: k ||eff s 1 D a ||eff 2 . ||eff (5.25) / D ||eff / a2 . ||, , , . = . - 305 (5.25), a2 / D . . FRC, . , - (5.25) (5.1), [348–357] . 5.14. 1000 exp, 100 10 10 100 . 5.14. 1000 D, ( FRC D) ( exp) - 306 - 100 D 2 exp, 10 1 1 10 D 2 100 theor, . 5.15. FRC , , (5.25) D D exp (5.1). theor, . 5.15. , D–TB~3 - : T ~ 10 , , a ~ 1 , Ln ~ 0.1 . - 307 2 D ~1 . <1 , . , ( . ||. , - , ). – - D . s r / r ( – ), max. ( s/ max ~ 105 2 max) . –1 . - s > 0.8, . . . - , , - . FRC . E ~ - N FRC. FRCD . ~D . - - 308 - , , . - , . FRC N, FRC . D 1 /( 0 – 0 ) D , (5.26) . D , . PCD , – p . J ( 1) p /( BLn ) , J2 J2 / , J J B . , 1) 2 D ( 2 ,D - p– (5.26) PCD , - ni k B Ti ne k B Te L2n Ln . (5.27) , - . (5.27) , , - - 309 - . ~1 . FRC . FRC , , . , , - , . FRC, , (5.14)–(5.16), (5.22). , . , , . ( ). 5.2. , . - , . . – , [45]. , , . 1.6. , , - - 310 . , – . LDX [427, 428] RT-1 [429, 430]. ~1 D–3He- D–D- [431]. - << 1, ~ 1, , [45, 432–434]. - [45]. [45] - . , . [435–437] . [438] . , 3, . . . 5.16 , - . . [439] [440]. - - 311 - . 5.16. ( ), ( ) ( ) , () ( ) - - 312 . [441] . 5.14 . - . , - . ( . . 5.14 ) . ,– , ds |B| const U s– min , , (5.28) – , . . - = const . (r, z). , - Br 1 , r z (5.29) - 313 - Bz 1 . r r (5.30) , . - [442] Br 2 10 7 z I r (r Bz 7 2 10 ( z b) 2 1 I (r I– a) 2 2 a) 2 2 ( z b) 2 , a– z = 0, k 2 K (k ) K (k ) a2 ( z b) 2 (r 2 2 a) ( z b) r2 a2 ( z b) 2 (r a) 2 ( z b) 2 E (k 2 ) , (5.31) E (k 2 ) , (5.32) , b– 4ar (r r2 a) 2 ( z b) 2 ,K E– - . , b/a (5.31) (5.32) - : Ba I idem . (5.33) , , (5.33) . : N 50, J 200 . - 314 , . ( dz Bz dr Br = const) ds , |B| du (5.34) u, - U du . - : , , . -3 . 5.17–5.20. - ( ,c - , ) . 5.17. . 5.18. , , , , , , , . . 5.19 = const. . 5.20 . - - 315 - 0.2 0.15 4 C1 3 0.1 5 6 0.05 z, C3 0 C4 -0.05 -0.1 C2 2 -0.15 -0.2 1 0.1 0.2 0.3 r, 0.4 0.5 . 5.17. -3: 1, 4 – ,2– N5 = 40, 3 – c Ns = 300, 5 – - N5 = 120, 6 – c Ns = 600. – N3 = 0.8N1, N4 = N1. , 3 – 1–3 N3 = N1, N4 = 1.74N1; : 1, 2 , – 4 4–5 - – - - 316 B, 0.1 0.09 0.09 1 0.08 0.08 0.07 0.07 0.06 0.06 0.05 0.05 0.04 0.04 0.03 0.03 0.02 0.02 0.01 0.01 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0.08 0.08 0.07 0.07 0.06 0.06 0.05 0.05 0.04 0.04 0.03 0.03 0.02 0.02 0.01 0.01 0 0.2 0.4 0.6 0.8 4 0.09 3 0.09 1 0.1 0 0 0.2 0.4 0.6 0.8 1 1.2 0.1 0.09 0.09 5 0.08 0.08 0.07 0.07 0.06 0.06 0.05 0.05 0.04 0.04 0.03 0.03 0.02 0.02 0.01 0.01 0 0 0.1 0.1 0 2 0 0.2 0.4 0.6 0.8 1 0 0 0 6 0.2 s, 0.4 0.6 0.8 1 s, . 5.18. , . 5.17; s – , - 317 - B 0.2 0.15 C1 0.1 z, 0.05 C3 0 C4 A -0.05 -0.1 1 -0.15 -0.2 . 5.19. C2 2 0.1 0.2 0.3 0.4 r, ( ( 0.5 = const) 6). 1, 2, 3, 4 – . . 5.17 - 318 - B, 0.035 0.03 0.025 0.02 0.015 0.01 0.005 0 0 0.1 0.2 0.3 s1, 0.4 0.5 . 5.20. AB . . 5.19): ––––––– – AB; s1 – AB, – – – – – , AB . . , ( Ln/R ) B = Ln/LB . R = - ( . 5.19), B ~ 0.5, R ~ –0.1. . –1, R 1, B . , - . ) ( B ~ 0.5, R –0.5. - - 319 - , . 3.22 3.23. - , . , D , k ~ 1/ Ti, k 2 , - – . k BTe . Ln eB Ti D gyro ( ): D D 0.1Dgyro. , 0.1Dgyro. 0.01Dgyro, D , - . – . - . [443, 444] , . , . - . , . - 320 ( ) [445] , - Er. Er kTe 1 e Ln (r ) [446]: E r (r ) . 5.21 Er 1 2L B (r ) Ur , , Uexp, - [46]. 0 0 Ur -10 Ur, . -400 Er , -20 -800 -30 -1200 -40 Uexp -50 -60 -4 -2 0 2 r, 4 Er -1600 8 -2000 10 6 . 5.21. ( ) - 321 (T 20 ,B 3 , ~ 1). s 0.1k B T /(eBLn ). s s ~ ( s– Ti ) . 10k B T /(eBa 2 ) . . 5 . D < 0.1 a 1 2 . - 5 . , . , , - 1 - , . 5.3. , . , . GAMMA-10 [124, 125] - . 4.6.5 - , . [124, 125] - - 322 - . : B = 0.4 Te = 60–120 , a = 0.2 , , Ti = 500–800 . [124, 125] D ne / ne ( ne / ne ) 2 L2n , - (5.35) – - . [205] D 2 k B Te . eB (5.36) , , [125], (5.36) - (5.37) . 5.22. , 0.1k (5.37) k B Te , k ~ 10 Ln1 , Ln ~ a , eBL n . , (5.36) - 323 10 3 10 2 , 10 1 Te = 120 10 0 Te = 60 10 -1 10-4 10 -3 ( ne/ne) . 5.22. 2 10-2 10-1 , ), [125] ( (5.36) ( ) [205], - [125] ( ) (4.4) D - 0.1k B Te k 2 [1 ( s / )2 ] k [1 ( s - 10 / ) 2 ]eBLn eB[1 ( s s 2 r d Er . B dr r k B Te s / )2 ] . (5.37) - 324 - / 0 1.0 0.8 0.6 0.4 0.2 0 -8 -6 -4 -2 0 2 s/ 4 6 . 5.23. s/ : – [125], – (5.38) : s 0.1 1 ( s / ) 2 . (5.38) . 5.23 s, (5.38) ( - 325 - ), [125] ( ). . 0 5.23 – s . (5.38), 0 0 = 0, - 0.1. - 0.11. 5.4. 3 - . - , ) ( - . , . - , - . , . << 1 k|| 0 . - . . (FRC). , - . - 326 - . core [130]. , - (ITG, ion temperature gradient) . , ~ 0.1 [281, 447– 450], ITG. ITG- . , - ITG- - , (TEM, trapped electron mode). TEM- (ETG, electron temperature gradient) [451]. TEM- ITG, - . ITG- . ETG- , - ( ) ITG. k ~ 1/ ETG- Ti k ~ 1/ , , Ti, – Te, TEM- ETG- Te – k < 1/ ITG- Te. , ETG[150]. ETG[150, 187]. - , . , , TEM- ETG- - 327 . , - , , - [107]. . [107], - , . , 3.2. , - [141] Dj v2 2 mj qjB mj – 3 v ||2 B B k , j (= i, e), qj – , v (5.39) ,B– - – , v|| – ,k – . A. Hirose [141]. , , [141] B1||. k|| = 0 - . - [141] k k , ) . ( (5.39) - - 328 . - , , , . , . , ITER Physics Basis [130]. , - - [255, 452, 453] - . ETG- k || v|| 0 . TEM- k|| = 0, . 0 ( Dj – Dj , ) . 0 0, Dj . , . , - , , . , - , . R = Re( ) > 0 . k|| = 0, , R = Re( ) < 0 – , k|| 0. - - 329 - . , , k Ti > 5 (k k Ti Te > 0.1). - < 5. , . i, , e, – = Te/Ti = R +i ( R – ) k|| k , . - (1.5), , - Ln . R/a, a– , . , , - ( 0 - [107]. , k|| R R/a ) - k . - . n n 0 1 (r / a) 2 = 0.45a. 0.5 i . = , e =2 r = 0.8a = 1. Ln , . 5.24–5.33, . - 0 ). k B Ti ( eBLn Ti ) 0e k B Te ( eBL n Te - - 330 - / 0.12 0 0.10 3 0.08 5 2 0.06 4 1 0.04 0.02 0 1 R/ -0.05 2 3 4 k 5 Ti 0 -0.10 -0.15 5 4 3 -0.20 2 1 -0.25 . 5.24. 0 1 2 3 ( ) k Ti 4 k 5 Ti ( ) i = e = 2, = 1, - = 0, Ln/a = 0.45, k||Ln = 0.1: 1 – R/a = 1.5, 2 – R/a = 2, 3 – R/a = 3, 4 – R/a = 4, 5 – R/a = 6 - 331 - 0.10 / 0e 1 0.08 2 0.06 0.04 3 0.02 4 5 0 R/ 0.3 0.5 1.0 1.5 2.0 2.5 k Te k Te 0e 1 2 0.2 3 4 5 0.1 0 . 5.25. 0.5 1.0 1.5 ( ) 2.0 2.5 ( ) k Te i = e = 2, = 1, = 0, Ln/a = 0.45, k|| = 0: 1 – R/a = 1.5, 2 – R/a = 2, 3 – R/a = 3, 4 – R/a = 4, 5 – R/a = 6 - 332 - F10i,e 4 Re(F10i) 2 Im(F10i) Re(F10e) 0 Im(F10e) -2 -4 0 4 8 12 16 k 20 Ti . 5.26. k i = e = 2, = 1, Ti = 0, Ln/a = 0.45, k||Ln = 0.1, R/a = 3 F10i,e 10 Im(F10e) 5 Re(F10e) 0 Re(F10i) -5 Im(F10i) -10 0 2 4 6 8 k 10 Ti . 5.27. k i = e = 2, = 1, = 0, Ln/a = 0.45, k|| = 0, R/a = 3 Ti - 333 - / 0 10 9 8 1 7 4 10–1 3 2 1 –2 10 5 6 –3 10 1 10 R/a . 5.28. (1–4) R/a i = e = 2, 2 – k||Ln = 0.1, k 2; 5 – k|| = 0, k = 0, k Ti Ti Ti = 1, (5–9) = 0, Ln/a = 0.45: 1 – k||Ln = 0.1, k = 0.5; 3 – k||Ln = 0.1, k = 0.3; 6 – k|| = 0, k = 10; 9 – k|| = 0, k Ti = 30 Ti Ti Ti = 0.3; = 1; 4 – k||Ln = 0.1, k = 1; 7 – k|| = 0, k Ti Ti = = 3; 8 – k|| - 334 - Dk/D0 1.0 2 1 3 4 5 0.1 6 10 7 –2 8 10 9 10–3 10–4 0 1 10 . 5.29. k (1–5) k Ti i = e = 2, 100 Ti (6–10) = 1, = 0, Ln/a = 0.45, k||Ln = 0.1: 1, 6 – R/a = 1.5; 2, 7 – R/a = 2; 3, 8 – R/a = 3; 4, 9 – R/a = 4; 5, 10 – R/a = 6 - 335 - S(k ), . 10 . 2 1 1 3 4 5 0.1 10–2 10–3 10–4 0.1 1 k 10 Ti . 5.30. k e = 2, = 1, Ti i = = 0, Ln/a = 0.45, k||Ln = 0.1: 1 – R/a = 1.5, 2 – R/a = 2, 3 – R/a = 3, 4 – R/a = 4, 5 – R/a = 6 S(k ), 10 . . 1 1 2 0.1 3 4 10 –2 5 10–3 10–4 10–5 10–6 0.1 1 . 5.31. 10 k 100 Ti k i = e = 2, = 1, Ti = 0, Ln/a = 0.45, k|| = 0: 1 – R/a = 1.5, 2 – R/a = 2, 3 – R/a = 3, 4 – R/a = 4, 5 – R/a = 6 - 336 - / 0.12 0.10 0 1 0.08 3 0.06 2 0.04 0.02 4 0 R/ -0.04 0.01 6 5 0.02 0.03 0.04 0 3 -0.08 2 6 -0.12 5 -0.16 -0.20 0 . 5.32. 1 0.01 4 0.02 0.03 ( ) 0.04 ( ) i = e = 2, = 1, Ln/a = 0.45, k||Ln = 0.1: 1 – k 0.7, R/a = 1.5; 2 – k Ti = 0.7, R/a = 3; 3 – k = 3, R/a = 1.5; 5 – k Ti = 3, R/a = 3; 6 – k Ti Ti = 0.7, R/a = 6; 4 – k = 3, R/a = 6 Ti = Ti - 337 - / 0e 0.10 0.08 1 0.06 2 0.04 3 0.02 5 6 4 0 R/ 0.16 0.1 0.2 0.3 0.2 0.3 0e 0.12 0.08 1 5 0.04 0 3 2 6 -0.04 0 . 5.33. 4 0.1 ( ) ( ) i 0.35, R/a = 1.5; 2 – k k Te Te = 0.7, R/a = 3; 5 – k = e = 2, = 1, Ln/a = 0.45, k|| = 0: 1 – k = 0.7, R/a = 1.5; 3 – k Te Te = 0.35, R/a = 6; 6 – k Te = = 0.35, R/a = 3; 4 – Te = 0.7, R/a = 6 - 338 . 5.24 5.25 = 0, ( ). . 5.26 - 5.27 . R/a 5.28. . 5.29 , . . 5.30 5.31 – - . . 5.32 5.33, . . k|| = 0 1 , B1||. k|| 0 k||. k|| = 0 , - . , R/a - k . k , - ETG- . ~ 0.1 . , 3.4, , , , - k|| = 0 ~ 0.5, . , ETGR/a . , . ), , R/a ( , . . - 339 - , . R/a k|| = 0 - . k|| 0 , k|| R/a, 0 k|| = 0, - (TEM) - . , . [107]. (k 1) k|| ~ 1/L, L– . Ti > [107] (a/R)3/4 : ; , ; ~ 0.1 ( - ) ~ a/ R. , k|| = 0, [107, § 11.3, § 12.3, § 12.4]. , 4.6. ( ITG- TEM- . 5.28, 5.29) , - [454, 455]. , 3, , - . - 340 - Tp k BT . eB Tp D0 Ln – (5.40) , T = Ti. (5.40) fD 0 k B T /(eBLn D / D0 / 0, (5.41) Tp ) . fD i, M e, , , A, Z. Ln ~ a, - : sa 2 sa D s – 3 (eB) 2 f D m p (k B T ) , mp – 3/ 2 . (5.42) . (5.42) ITER Physics Basis [130], , . [130]: core,th( 2) Ip – 0.065 I 0p.45 B 0.35 ( n e ( ), L / 1019 ) 0.6 a 2.55 A 0.68 – ( , <ne> – ; . 0.88 0.6 0.2 M , s PL (5.43) ) Ip PL - 341 (5.43) . . Ip 100aB / N , N 2–3 – ( PL ~ 2 ). core a 3 (eB) 2 ~ m p (k B T ) 3 / 2 0.7 s (100 / N 2 s Aa )1.125 3 Ti ~ 1 (ITG- ) fD 1, c 1 1.125 . A 0.2 M 0.5 . . (5.44) . 5.26, 5.30), A. fD b - nk B T ( k , b A c - , (5.45) 0.2. , A, , . (5.45) s 0.7 , . . , ITG- , , M (Z , M ) Z 2 M fD M 1/ 2 Z 2 . , Z=1 1/ 2 M = 1, 2, 3 . 5.34. (Z 1, M Z 1) , . - - 342 - Dk/D0 0.6 0.5 2 0.4 0.3 3 0.2 1 0.1 0 0.1 1.0 10.0 k Tp . 5.34. k = 1 (1), M = 2 (2), M = 3 (3), Z = 1, i = e = 2, = 1, M Tp = 0, Ln/a = 0.45, k||Ln = 0.1 , - , , , . , , , i, e, . , A . 5.5. , , - - 343 . . 1) (FRC). FRC ), . - . 2) - ( ) . , , - , - . 3) , . , GAMMA-10. 4) , . A ITER . ( core). - - 344 6. 6.1. - . . , - . , , . - , . - . Q > 10. Q - 1, . – Q , 1, . , - - 345 ( ) , , . , . – ( - ) [456–458]. « » , , . ( - ) [33, 34]. , (D–T) , - , . , ~ 1000 [33, 34], , . - [35]. . . [459]. , . . - « » , . « » . - - 346 . . , . - , , Te - Te3/2, . Te 10–20 , Te ~ 1 . , [36]. , , - [460]. , . - . E B , . - - , [461], . - « », [462]. , - - 347 , . - GAMMA-10 [124, 125]. -I [122] Alice [123]. , , ) ( - . . , - 0.5–0.6 [35, 459]. [463]. - [37, 97], , . , , - [97]. [98]. - [85]. [86, 87]. . , [37, 97, 98], , - 348 . ( ) , - . . , . , - , - : . T- , D– 3.52 . - , , 1 [88]. v fa a fa t 1 v2 v C v 2 D vv fa v ( AvC 1 v 2 sin AvN ) f a sin D C fa sa ( ) 4 v 02a (v v 0 a ) L a , (6.1) C Dvv , D C , AvC – , AvN – - , sa( ) – , La – fa / t 0, , . , - - 349 . - , : 1 s a ( ) sin d 20 qa , qa – , . - La (v, ) fa / fa / La|| || ( v, ). - ; || . , , ; La|| = 0. , , - , [54, 85]. , [88], 1 v 2 AvN n b ( v) b ( E / E ) b , - , nb ( v) b , L ) fa , - , (1 cos AvN b b. : LN a - ( v) b – , ( E/E)b – , , L - – b . : - 350 - f a (v fa v 0a , ) (v, 0) f a (v, ) 0, 0, fa (v, ) m a v ||2 2 fa (v v , Bm Bc ; ma Za – Zae 1 , – v cos 0, (6.2) a; Bc – ; Bm – ; v|| 0, ) 0. ma v 2 2 e– a; 0 v v sin - – - . Bc B0 1 , B0 – - . , Bm . [55] f 0a ( v) qa – , (6.3) qa 4 (v 3 sa 3 v ca ) sa , (6.3) v ca (1.33). , - 351 . vTi v vTe , vTi vTe – . - , , , . - , - v ~ v Ti . Pinj, - , Pfus. . (6.3) : Ti Te 10 (Ti – 100 ), . - , , , , , - . FPC2 [98], – (6.1). , . , - . . D–D- [464] 3–5 , , , - - 352 - . e = (1–1.5)kBTe. - . e kBTi - , . . , , . , Ti Te 20 e = 0.5kBTe , 2kBTe – - e = kTe – 1.5 , e = 10 %. . - – , . - . , . , , - v . , , . 6.1. , , t s , - 3 s, - . - , 250 , . , - 353 - . 6.1. ( ) ) ( ) t = 0.1 s ( ), 0.3 nD = 3.3 1019 10 s ( ). 250 s , 45 5 , , Ti = Te = 20 = 10 –3 , 3 2 s , , = 4.5 , = s , , . 1.7. : Pfus – ; Pn – 80 % ( Pfus); Pext – ; Pb Ps – ; Pch – ; (Pfus)i – ( , Pie – ) ; (Pfus)e – , - 354 . , , ) 20–30 % - . [36, 456–458, 465]. - , s; . ( 2% Pfus). , , , - , - . 5 - , ( 1, 3, 4 – ) . 2 - ( ) . 1–4 - T a=1 , L = 10 , 5 20 . 1–4 = 0.5. : a = 0.1 , L = 16 , = 0.6. - . , . , - 3–4 100 , - . - 355 - 5. . . . . . 1* 2* 3* 4* 5** B0, 1.5 1.5 2 2 1.5 11 11 14 14 15 0.22 0.26 0.21 0.415 1.32 0.33 0.26 0.42 0.415 1.32 0.04 0.03 0.06 0.085 0.02 11 10 22 22 3 8.5 10.5 18 19 3.6 16.5 15 33 44 3 250 250 250 250 65 90 90 100 65 23 74 60 60 55 50 PRH, 0 18 0 0 51 Pn, 30 24 43 59 3.6 0.5 0.38 0.9 1.34 0.045 13 11 19 26.5 1.5 0.4 0.4 0.7 1 0.36 1.8 1.2 1.8 2.0 9.9 Bm, nD, 1020 nT, 1020 –3 –3 n , 1020 –3 Ti, Te, , E0, <E>, Pinj, Q = Pfus/(Pinj + PRH) N, 1018 /c Jn, 2 JH, 2 - 356 Te = 3.6 5 - . E|| - 0.01 c, . , Bohm >> , 0.05 E||. Bohm. - , 45% , T 20 - , Pinj. Q , Q ~ 1. , Q 0.05 - . . . Q N 1 [466, 467] [5]. , . , ( ) , . , . , . - . , , - - 357 . . 11–14 , . , , Q 1 - . D–3He- 6.2. D–3He- - , . Physics Basis (IPB), ITER ITER [2, 468], . ( – A D–3He- ), - 3, - [12, 469]. , D–3He- ~1 , D–3HeD–T- . ~ 1 – (A = 1.1–2) [19–23]. c 0.5, IPB [20]. , , . - , - - 358 . , IPB, D– 3 He- . . , , , , 3 2 [24, 469, 470], . , - D–3He- B0 = 2–3 T. - B0 5 . - . IPB . D–3He- . , , . D–3He- , . D–3He, . , - 359 Bc - . [24, 469] D–3He. 6 , [24, 470]. , [470], , 0.34 3 . , [24], . - , . 1500 . - 40 %, 600 , - . , . 6. D–3He- [24, 470] [470] a, R, [24], [24], .1 .2 6.15 3 2 8 4.5 3 2.7 3 5 128 200 140 0.32 0.5 0.4 43 40 40 6100 1500 1500 B0, Ip, < > <T>, Pfus, - 360 - . 6.2. ( ) ( a, . . 6.2) - R, A = R/a, k . . , . r0 - . , , r0 . . - 361 - r0 = R – a – ), 0 s – 0, s – ( – . - . ( Bmax B0 B(r0 ) B ( R) ) R R a - . s (6.4) 0 , , B0 . . - . , . : B0 = 5.5 , a = 2 , A = 1.7, s = 0.3 , r0 = 0.95 , Bmax = B(r0) = 19.7 0 = 0.15 . . , , , Bp, - . Bp Bmax [ B (r0 )]2 B 2p - B0. 20.5 , . , 4.2 B . - (Nb3Sn) - Bc = 24.5 20 jmax , I , [471, 472]. 0.4 109 2 r0 B(r0 ) / , 2 . 0, 0 – I = - 362 9.35 107 . % ). 2 0.28 j = 0.33 109 ( 10 2 . - . . ITER Physics Basis . - [473], - ITER-FEAT [468, 474]. D– 3 He- ITER, . D–T- , A : ITER A > 3, 0.5. < 0.05; D–3He- , , - D–T- (T 50–70 A < 2, ~ ) - . - , ITER Physics Basis , . ; B0; T0 ; ; 0 , Ip Q. . , IPB98y2 ITER. 0.25 40 . 2 , - 363 - D–3He- . 6.3. - , ITER , 3.7, [473]. , k= , (D–T- ARIES ) [475]. = 0.35 ( ITER). . 6.3 D–3He- - , ITER ( [475]). 900 3 , 800 3 - V 600 3 . - [470, 476] qa 5aB0 [1 k 2 (1 2 2 AI p 2 1.22 3 )](1.17 0.65 A 1 ) . (1 A 2 ) 2 (6.5) - 364 - Ip MA. , n n0 (1 2 T T0 (1 2 p n0, T0 - p0 (1 n, ) ) T (6.6) , 2 ( n ) p0 – (6.7) T ), (6.8) , , - – . p0 B02 , 0 2 0 0 – - . n0 /(1 n : 0 /(1 - n T n), T T0 /(1 T ), p ), p 0 /(1 n T ), - . < > 0.01 N – ( N Ip aB0 , (6.9) ). : Te - 365 = Ti = T. ne Z i ni , (6.10) i ne – , ni – , Zi – , . , a2 NG Eth 3 2 V– ne 1. 10 20 I p ni k BTi ne k B Te V 3 2 Pn ) Pr i - (6.11) B02 Vp , 2 0 (6.12) . (6.13) . (1 f fast )( Pfus Paux Eth E , – . , , , - - 366 Pfus Pn, ( ). - ffast = 0.05 ( ITER). - Paux. Pr ( ) , E. - Q Pfus / Paux , (6.14) ; - Q 10 . Pr Pb Ps , Pb – (6.15) , Ps – - . , . , , , D–3HeITER-FEAT , . - , - - 367 . , , , , , ITER D–3He- . ( ), - , . – , . « » [477]. , [99]. - [70]. [83]. Q , Pfus Paux. Pfus, Pn, Pr , ffast Ps, Eth - . Pr Rw. E. E, , , , , . 98 y 2 E 0.0562 I 0p.93 B00.15 M 0.19 ( ne - IPB98 2 [130] / 1019 ) 0.41 a1.97 A1.39 k 0.78 PL 0.69 , (6.16) - 368 M– , L – ( ) , ( ) - . : H y2 E 98 y 2 . E / (6.17) Hy2 = 1.2–1.5, - [20, 22, 23]. T0, x3He = n3He/nD (n3He – -3, nD – ) ximp = nimp/nD (nimp – ). x3He T0 . - Hy2, . - x3He Jn Pn / S 0 , S0 – , ( - ). . - k = 3.7 ( N , , ARIES-ST [478]) = 5. 3.5 3 . - 369 2.4 Hy2 2.0 Q = 20 Q = 10 1.6 Q=5 1.2 0.8 40 50 60 . 6.4. 70 T0, 80 Hy2 x3He = 1 1.8 Hy2 1.6 Q = 20 1.4 Q = 10 Q=5 1.2 1.0 . 6.5. Hy2 T0 = 62 0 0.5 1.0 x3He 1.5 -3 - 370 0.9 Jn 2 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0.5 1.0 1.5 x3He . 6.6. -3 T0 = 62 . 6.4–6.6 . , T0 = 62 Q = 10. Hy2, x3He = 0.5– 0.6. , Hy2 10 %. , - x3He = 1, x3He - x3He = 1. Li3+, Be4+ ITER. Ar18+. – , – . , - . 6.7. - 371 4 Hy2 Ar Be4+ 18+ Li3+ 2 3 3 2 1 1 0 . 6.7. 0.05 0.1 0.15 0.2 ximp 0.25 Hy2 : 1 – Li3+ (xBe = xAr = 0), 2 – Be4+ (xLi=xAr= 0), 3 – Ar18+ (xBe= 0.025, xLi= 0) , - Hy2. xLi 0.2, – xBe 0.1, . . D–DD–3He- , ( -3 . ) . . p - . D–3He7. . ITER-FEAT - - 372 7. D–3He1, ST-2 ST-3), ( ST- ITER-FEAT [468] D–3He D–3He D–3He ITER- ST-1 ST-2 ST-3 FEAT a, 2.0 2.0 2.0 2.0 2.0 R, 3.4 3.4 3.4 6.2 6.2 A = R/a 1.7 1.7 1.7 3.1 3.1 k 3.7 2.8 2.8 1.7 1.7 0.35 0.5 0.5 0.35 0.35 900 653 653 828 830* 5.5 5.5 5.5 5.3 5.3 Ip, 110 110 110 15 15 q95 4.7 3.1 3.1 3.0 3.0* 0.5 0.5 0.25 0.025 0.025 N 5.0 5.0 2.5 1.77 1.77* NG 0.56 0.56 0.28 0.85 0.83* 4.92 4.92 2.45 1.01 1.03* Ti0/<Ti>, 62/44.3 62/44.3 62/44.3 16.2/8.1 16.2/8.1 Te0/<Te>, 62/44.3 62/44.3 62/44.3 17.8/8.9 17.8/8.9 0.4/0.2 0.4/0.2 0.4/0.2 1.0/0.1 1.0/0.1 1 1 1 – – xp 0.074 0.074 0.074 – – x 0.16 0.16 0.16 0.1 0.1* xT 0.0038 0.0038 0.0049 1 1 xLi 0.05 0.05 0.025 – – xBe – – – 0.05 0.05 xAr – – – 0.003 0.003 3 V, 0, > <ne>, 1020 T/ n x3He –3 - 373 7. D–3He D–3He D–3He ITER- ST-1 ST-2 ST-3 FEAT Rw 0.85 0.65 0.85 – 0.5 Eth, 8124 5900 2950 325 324* Pfus, 3064 2225 582 410 410* 162 119 37 (0.053) (0.053) (0.064) 1746 1267 310 21 31 (0.57) (0.57) (0.53) (0.057) (0.077)* 273 324 149 8 8 (0.089) (0.145) (0.26) 2053 1591 459 48 40 (0.67) (0.71) (0.79) (0.117) (0.097)* 306 (0.1) 222 (0.1) 58 (0.1) 41 (0.1) 41 (0.1)* 10 10 10 10 10 , 20 20 40 17 17 p, 10 10 20 – – E, 7.8 9.4 25.7 3.7 3.7* 98 2 E 1.24 1.31 1.48 1.0 1.0* Val E 1.06 1.09 0.87 – – 2 0.16 0.16 0.05 0.4 0.4* Pn, (Pn/Pfus) Pb, (Pb/Pfus) Ps, (Ps/Pfus) Pr, (Pr/Pfus) Paux, (Paux/Pfus) Q Hy2 = HVal = Jn, E E 328 (0.8) 328 (0.8)* (0.0195) (0.0195)* - 374 . , , ( - *) ITER- FEAT. IPB98y2 . [479], MAST NSTX. , , - [480], Val E 0.252 I 0p.59 B01.4 PL 0.73 M 0.19 R1.97 (1 / A) 0.58 k 0.78 . , , (6.16) (6.18) (6.18), . 7 : a; A = R/a; R; k; ; V; 0; q95 ; , Ip; 95 % < >; - N; NG; <ne>; Ti0, Te0 <Ti>, <Te>; T, n; - x3He, xp, x , xT, xLi, xBe, xAr ; - Rw; Eth; Pfus; Pn, Pb; Pr; Ps; Paux; - - 375 - Q; p; E; E Hy2 = Val E ; E - 98 2 ; E HVal = Jn. (ST-1) Pfus 3000 . 1000 , [481], - . - 95 %. k = b/a = 3.7 N = 5. - k = 2.8. - 2200 ( ST-2). . , - . N B0 1 . B0 =5 5 N [482]. , , , (ST-3) k = 2.8, N . - = 2.5. . , - k = 3.7 N =5 . D–3He- , , , . -3 . , - - 376 , - D–3He- . – B0 ITER. >3 , 5 N 5 T k . , D–3He- . - . 6.3. - (FRC), , , . D–3He- . - D–3He- FRC[483–486]. FRC, , , . (6.13). FRC FRC . 5.1. FRC- - - 377 . , . Bea (Be – , , ,a– - ) , - ( first orbit losses) [375]. 14 ( first orbit losses) Bea > 15 , 3.5 – Bea > 5.5 [375]. , . Be . - . 5.1, - a. FRC - . , , . . , , - : D Ti, Ln theor Ti 0.1 k B Ti , Ln eBe Ti (6.19) , - - 378 . . D , . 5.1, req. HD D theor /D req . (6.20) . - . 1 ( HD s / )2 , s – , . – - FRC - , s 3 . - HD = 10 . , - , 3–4 , . , Be = 5 , a = 2 D–3He- . Be = 2 , a = 1 Bea, D–T, , - , . 5% . . 200 . - - 379 . , , - , D–3He- ( 14 ), . , . . - , T = Ti – Te ~ 1 . Pie , . T - Pie. ~1 - T . - Te = Ti. - Rw = 0.8. – . - Q = 20. 8. D–3He- 2– . FRC D–3HeD–T- . FRC-1 , FRC- FRC-3 D–T- FRC-4 – , , FRC. 8 L; : k; V; e; >; a; s <ne>; - 380 T0 <T>; x3He, xT, xp, x , xLi ; Eth; Pfus; Pn, Pb; Ps; Pr; - Paux; - Q; p; E; - HD; Jn; JH. D–3He- , FRC 2 (< 0.3 ), , . 2 3 ) . . D–T- D–3He- , D–T, , . D–T- FRC . D–3He- FRC[484] ARTEMIS , - , - , . D–3He- FRC , , , . - FRC . , ARTEMIS , 200 ARTEMIS . 0.3 2 . - - 381 - 8. FRC D–3HeFRC-1, FRC-2) D–T- ( (FRC-3, FRC-4) D–3He D–3He D–T D–T FRC-1 FRC-2 FRC-3 FRC-4 a, 2.0 2.5 1.5 0.5 L, 20 20 15 2.5 k = L/a 10 8 10 5 240 375 101 1.9 5.0 5.0 2.0 1.0 0.80 0.50 0.50 0.8 0.93 0.83 0.83 0.93 5.0 4.6 3.4 1.2 67/64 67/59 12/10.6 10/9.5 1 1 – – xT 0.0064 0.0059 1 1 xp 0.16 0.13 – – x 0.34 0.28 0.072 0.0058 xLi 0.05 0.05 0.05 0.05 3 V, e, s > <ne>, 1020 Ti0/<Ti>, x3He –3 - 382 8. D–3He D–3He D–T D–T FRC-1 FRC-2 FRC-3 FRC-4 Eth, 3140 4380 190 1.0 Pfus, 1214 1670 1070 1.57 Pn, (Pn/Pfus) 65 (0.054) 92 (0.055) 860 (0.80) 1.26 (0.80) Pb, (Pb/Pfus) 628 (0.52) 859 (0.51) Ps, (Ps/Pfus) 22 (0.017) 67 (0.040) Pr, (Pr/Pfus) 670 (0.54) 926 (0.55) Paux, (Paux/Pfus) 32 (0.04) 0 32 (0.04) 60 (0.05) 84.5 (0.05) 53.5 (0.05) Q 0.05 (0.03) 0 0.05 (0.03) 15.7 (10) 20 20 20 0.1 , 20 20 3 0.3 p, 10 10 – – E, 6.3 6.7 0.84 0.06 HD 2.8 10 10 1.6 Jn, 2 0.26 0.29 6.1 0.16 JH, 2 2.8 3.2 6.3 0.17 FRC Q = 0.1, D–T- . 10 , , . 16 . . Q = 0.1 . 0.16 2 - - 383 . , - FRC ( D–T- ) . - . - – 1 . E , ~ 0.1 , . D–3He- FRC, , . , , , - . FRC . , . , . . , , , . - , . FRC . , . FRC ( . 5.1.3), - 384 , . - ( ) = kBTi/e. || 7 ii. . , - . , D–3He- FRC. FRC , , - , D–3He- , . D–3He- 6.4. - - D–3He, . 5.2. [487]. -3, x3He = n3He/nD = 0.3 . D–3He- , , , , . - . - - 385 , , , . 3 Pfus = 2 - Q = 20. 9. 3 Pfus = 2 - , . 14 , , , - , - . . - . 50 . - D–D- [431] 9 , 40 [443] D–T10 . - , , 1 - . , D–3He. , . 5.2, - , , . FRC, - - 386 9. 2 3 D– He3 Q = 20 a1 = 7 a3 = 4 a4 = 8 a5 = 1.8 z=0 b = 2.2 I1 = 54 I3 = 43 I4 = 54 ( ) Is = 567 ( - ) I5 = 162 B = 4.6–14 D–3He- fus = 3–8 nD = 1.8 1020 -3 x3He = n3He/nD = 0.3 xT = nT/nD = 0.0042 3 He ne = 2.9 1020 Te = Ti = 50 ( = 0.5 Pn/Pfus = 0.16 ) - Pbr/Pfus = 0.27 Ps/Pfus = 0.3 E> 6 -3 - 387 p–11B 6.5. 11 B p + 11B 34He + 8.681 , (6.21) . - . (6.21). - , . -11 , , - . p–11B- , . , , , p–11Bp–11B- ~ 1. [488, 489]. , , , p–6Li, p–9Be, 3He–3He ( . [7]) , - p–11B. , , , , 1.6 - . . , - - 388 , , . , . – - . . p–11BEc.m. (6.21) 680 , p–11B- . . 1.16 ( p–11B- 1.2.4). . . Colliding Beam Fusion Reactor (CBFR) [490, 491] ( [492, 493] ) . [494]. , CBFR - [495]. , p–11B- CBFR , , 100 %. , , , . p–11B- . - , . . - - 389 , , p–11B- . - [9, 67, 496], , Te = Ti . . - , . . [9, 67, 496] . , . Te > 100 [70], . 1.2.2. - , . , , - . Te < Ti . [10]. . 6.8. E , 680 - . . - 390 - p–11B . 6.8. ( ). : 0.3 , kBTi - . [94, 95]. , , . p–11B- . – . - . [55, 97]. - 391 - . . 6.9 -11 6.10. xB = nB/np = 0.1–0.2 . Q 5 xB = 0.15 4 3 xB = 0.1 xB = 0.2 2 =8 =2 =5 1 0 0 100 200 300 Ti, 400 p–11B- . 6.9. = 1: ––––– B0 = 15 , ;–-–-–-– ;–––– 500 , - - 392 - Te, 200 1 180 2 160 140 120 100 80 60 40 20 0 0 100 200 300 Ti, 400 p–11B- . 6.10. 500 B0 = 15 , = 1, xB = 0.15: 1 – ); 2 – - , =5 Q . 4. - Q 1. - 393 p–11B, 1.6 . Q 4. 1 Q > 10 Q - . , . v , -11 . Ec.m. . 1.16 - . 1.2.4. , , . Ec.m. > 200 Ti 150 Te 100 Ec.m. < 100 , Q - . Q p–11B- . 10 p–11B- , 4 Q - . , : ; ; . - . Q = 10 , . , p–11B 2 - - 394 . E 700 -11 V p–11B 107 10–21 (V)V . - , , , 3 . , Ti Te 1.6 10–22 v 100 150 , , 3 . - . Ti 150 Te 100 . . 1.5 , . , . , , Q . , E - 700 . , 200 . - . , . , Q < 1. , CBFR. -11 - . (FRC). - . - - 395 -11 k B Ti 1 eBL Z p V 1 , ZB (6.22) L– , Zp = 1 V L Ti 150 1 107 , 1 B 1 L 1 . , - 100 900 , . ZB = 5. , . - , , . , , - p–11B . , ( , , - ) Q 5. 10 : 1) , 2) . - 396 10. p–11B - Ti, 250 250 126 125 0.95 0.95 B0, 10 11 Bpl, 2.3 2.4 4 1020 4 1020 -11 n11B/np 0.15 0.15 n /np 0.19 0.29 2 2 – 650–800 1 2.2 10.5 23 1.5 0.76 0.057 0.030 1 10 10 7.5 Te, ( ) np, –3 a, E, 3 Pfus, - b = Pb/Pfus s = Ps/Pfus Q , - 397 p–11B . D–3He- , . - ,– , . . , . - . . [497]. p–11B- FRC. , , - , - . - -11, (ZB = 5) . , . , [498–500]. , p–11B , - . . , . - 398 , . , , , , , , , - . 6.6. , , (FRC). - , - . , , - , . – . – . Q . , , . , p–11B. - 11. - 399 11. D–3He FRC p–11B FRC, 0.8–0.9 0.95 2–2.5 2 5 10 10–20 60–70 100 250 – 1000 1–3 5 5 2 2.5 2.5 0.4–1.3 10–20 2 6–7 7 1 3–10 ~ 10 80 5–7 0 < 10 60–80 D–T 0.5 a, 1 1.5–2 (11–15 ) B, T, Einj, Wfus, 3 JH, 2 Q E, ,% ~1( % 100 5) - 400 - , , - . , - , : 1) - D–3He- ; 2) FRC. 10–20 . , - FRC - , FRC D–3He- . , - . - , . ~ 0.5 T ~ 100 , - . . - - 401 , . [501], [502], FRC [503] - . , [504], [505], [507] [506], - ETG- [508]. [509]. [510]. - . . 1. . 2. , . 3. ( ) . - 402 . 4. (FRC) , , , . - FRC D–3He- . Q = 20. 5. Q = 0.1–0.5. 6. p–11B, Q - 5. 7. , , , , - . 8. , , , - . - 403 - 1. ., . - // . 2006. . . 4. . 3–14. 2. ITER Physics Basis / F.W. Perkins [et al.] // Nucl. Fusion. 1999. V. 39. P. 2137– 2638. 3. / . [ . 2007. .] // . - . 4. . 3–13. 4. Stacey W.M. Tokamak D–T fusion neutron source requirements for closing the nuclear fuel cycle // Nucl. Fusion. 2007. V. 47. P. 217–221. 5. / . 6. [ .] // . 2010. . 36. . 307–346 . 1989. ( . -4885/8). 7. Feldbacher R. Nuclear Reaction Cross Sections and Reactivity Parameter. IAEA, 1987. 8. McNally J.R., Jr. Physics of fusion fuel cycles // Nuclear Technology/Fusion. 1982. V. 2. P. 9–28. 9. Alternate fusion fuel cycle research / R.W. Conn [et al.] // Plasma Phys. and Contr. Nucl. Fusion Res.: 8th Int. Conf., Brussels, 1980. V. 5. P. 621–631. 10.Nevins W.M., Swain R. Thermonuclear fusion rate coefficient for p–11B reaction // Nucl. Fusion. 2000. V. 40. P. 865–872. 11.Progress in ITER Physics Basis. Chapter 9: ITER contributions for Demo plasma development / V. Mukhovatov [et al.] // Nucl. Fusion. 2007. V. 47. P. S404– S413. 12.Khvesyuk V.I., Chirkov A.Yu. Low-radioactivity D–3He fusion fuel cycles with - 404 3 He production // Plasma Phys. Control. Fusion. 2002. V. 44. P. 253–260. 13.Santarius J.F. Very high efficiency fusion reactor concept // Nucl. Fusion. 1987. V. 27. P. 167–171. 14.Self-ignition of an advanced fuel field-reversed configuration reactor by fusion product heating / M. Ohinishi [et al.] // Fusion Technol. 1987. V. 12. P. 249–256. 15.Kinetics and an analysis of the D–3He tandem mirror reactor plasma parameters / I.N. Golovin [et al.] // Proc. of Workshop Held at Villa Manastero, Varenna, Italy, September 6–15, 1989. P. 673–692. 16.Wittenberg L.J., Santarius J.F., Kulcinski G.L. Lunar source of 3He for commercial fusion power // Fusion Technol. 1986. V. 10. P. 167–178. 17.Stott P.E. The feasibility of using D–3He and D–D fusion fuels // Plasma Phys. Control. Fusion. 2005. V. 47. P. 1305–1338. 18.MHD-limits to plasma confinement / F. Troyon [et al.] // Plasma Phys. Control. Fusion. 1984. V. 26. P. 209–215. 19.Peng Y.-K.M., Strickler D.J. Features of spherical torus plasmas // Nucl. Fusion. 1986. V. 26. P. 769–777. 20.Sykes A. Overview of recent spherical tokamak results // Plasma Phys. Control. Fusion. 2001. V. 43. P. A124–A139. 21. / . [ .] // . 1999. . 69, . 9. . 58–62. 22.Overview of physics results from NSTX / R. Raman [et al.] // Nucl. Fusion. 2011. V. 51. 094011 (18p.). 23.Overview of physics results from MAST / B. Lloyd [et al.] // Nucl. Fusion. 2011. V. 51. 094013 (10p.). 24. . D–3He- 3 He // 76, 25. . 2006. . . 9. . 51–54. . - - 405 // . 2008. . 34. . 387–392. 26. ., . , // 27. - . 2008. . 34. . 971–976. ., ., . . . . 7. // .: , 1985. . 80–135. 28.Tuszewski M. Field reversed configurations // Nucl. Fusion. 1988. V. 28. P. 2033–2092. 29.Steinhauer L.C. Review of field-reversed configurations // Phys. Plasmas. 2011. V. 18. 070501 (38p.). 30.Chirkov A.Yu., Khvesyuk V.I. Analysis of D–3He/catalyzed D–D plasma as a source of fusion power // Fusion Technol. 2001. V. 39, No. 1T. P. 406–409. 31.Overview of Recent Progress in the GAMMA 10 Tandem Mirror / T. Cho [et al.] // Fusion Sci. Technol. 2007. V. 51, No. 2T. P. 11–16. 32.Ivanov A.A. Perspectives of development of magnetic mirror traps in Novosibirsk // Fusion Sci. Technol. 2011. V. 59, No 1T. P. 17–22. 33. ., . - // 34. . 1979. . 5, ., . 11. . . 678–682. // . . 1980. . 1. . 57–66. 35.Gas dynamic trap as high power 14 MeV neutron source / P.A. Bagryansky [et al.] // Fusion Engineering and Design. 2004. V. 70. P. 13–33. 36. . : // 37. ., D–T, D–3He 26, , . 1997. . 23. . 883–908. . D–D . 21. . 61–66. - // . 2000. . - 406 38.Plasma kinetics models for fusion systems based on the axially-symmetric mirror devices / A.Yu. Chirkov [et al.] // Fusion Sci. Technol. 2011. V. 59 (1T). P. 39– 42. 39. ., ., // . . 2000. . 26. . 407–415. 40.The EPSILON experimental pseudo-symmetric trap / V.V. Arsenin [et al.] // Nucl. Fusion. 2001. V. 41. P. 945–952. 41.Chirkov A.Yu., Khvesyuk V.I., Ryzhkov S.V. Modified open systems for low radioactive fusion reactors // Fusion Technol. 1999. V. 35 (1T). P. 393–397. 42. ., . // . 2002. . - 1 (8). . 32–40. 43.Ryzhkov S.V., Kostyukov I.Yu. Magneto inertial fusion based on a cusp field configuration // ArXiv e-prints. 2009. arXiv:0911.5497v2 ( 30.05.2012). 44.Chirkov A.Yu., Ryzhkov S.V. The plasma jet/laser driven compression of compact plasmoids to fusion conditions // Journal of Fusion Energy. 2012. V. 31. P. 7–12. 45. ., . // 46. . 1998. . 168, . // . 2000. 47. . . 3. . 57– 63. . // 48. 11. . 1153–1194. . 2009. . 35. . 381–384. . // . 2010. . 36. . 499– - 407 509. 49.Tokamak-like confinement at high beta and low field in the reversed field pinch / J.S. Starff [et al.] // Plasma Phys. Control. Fusion. 2003. V. 45. P. A457–A470. 50.Plasma performance and scaling laws in the RFX-mod reversed-field pinch experiment / P. Innocente [et al.] // Nucl. Fusion. 2009. V. 49. 115022 (11p.). 51.Jarboe T.R. Review of spheromak research // Plasma Phys. Control. Fusion. 1994. V. 36. P. 945–990. 52. / . [ . 2003. .] // . . 1. . 22– 28. 53. -X [ .] // 54. / . 1997. . 67, . - . 2. . 12–16. . - // . . 4. / . . . : , 1964. . 81–187. 55. . . 18. / 56. // . . , . 57. : , 1990. . 209–315. . ., . : , 1971. . . : , 1981. 58. ., . ., . . IV / . ., . .: , 1989. 59.Electron bremsstrahlung spectrum, 1–500 keV/ C.M. Lee [et al.] // Phys. Rev. A. 1976. V. 13, No. 5. P. 1714–1727. 60.Gould R.J. Thermal bremsstrahlung from high-temperature plasmas // Astrophys. J. 1980. V. 238. P. 1026–1033. 61.Stickforth J. Zur theorie der bremsstrahlung in plasmen hoher temperatur // Z. - 408 Physik. 1961. V. 164. P. 1–20. 62.Greene J. Bremsstrahlung from a Maxwellian gas // Astrophys. J. 1959. V. 130. P. 693–701. 63. . - // . 1952. . 22, . 2. . 140–142. 64.Maxon S.M., Corman E.G. Electron-electron bremsstrahlung from a quantum plasma (Z = 1) // Phys. Rev. 1967. V. 163, No. 1. P. 156–162. 65.Haug E. Bremsstrahlung and pair production in the field of free electrons // Z. Naturforsch. 1975. V. 30a. P. 1099–1113. 66.Haug E. Electron-electron bremsstrahlung in a hot plasma // Z. Naturforsch. 1975. V. 30a. P. 1546–1552. 67. ., . // . 1979. . 5. . 1264–1270. 68.Alexanian M. Photon bremsstarhlung from an extreme-relativistic electron gas // Phys. Rev. 1968. V. 165, No. 1. P. 253–257. 69. . 100 1 // VIII : . ., 2009. . 276–280. 70.Chirkov A.Yu. Plasma bremsstrahlung emission at electron energy from low up to extreme relativistic values // ArXiv e-prints. 2010. arXiv:1005.3411v1 ( 30.05.2012). 71.Svensson R. Electron-positron pair equilibria in relativistic plasmas // Astrophys. J. 1982. V. 258. P. 335–348. 72.Dawson J.M. in Fusion, Ed. by E. Teller. New York: Academic Press, 1981. Vol. 1. Part B. Chapt. 16. 73.Maxon S. Bremsstrahlung rate and spectra from a hot gas (Z = 1) // Phys. Rev. A 1972. V. 5, No. 4. P. 1630–1633. - 409 74. ., . // . . .: .: , 1983. . 4. . 194– 274. 75.Lamourex M., Avdonina N. Bremsstrahlung from hot plasmas with partially ionized atoms // Phys. Rev. E. 1997. V. 55, No. 1. P. 912–926. 76. . » « // 77. . 1972. . 16, - . 1. . 37–39. . // . . , : . . 7. / , 1973. . 274–300. 78.Tamor S. Extension of Trubnikov’s radiation loss formula to relativistic temperatures // Nucl. Fusion. 1983. V. 23. P. 1704–1708. 79.Benchmarking of Codes for Calculating Local Net EC Power Losses in Fusion Plasmas / F. Albajar [et al.] // Fusion Sci. Technol. 2009. V. 55 (1). P. 76–83. 80.Albajar F., Johner J., Granata G. Improved calculation of synchrotron radiation losses in relativistic tokamak plasmas // Nucl. Fusion. 2001. V. 41. P. 665–678. 81.Fidone I., Giruzzi G., Granata G. Synchrotron radiation loss in tokamaks of arbitrary geometry// Nucl. Fusion. 2001. V. 41. P. 1755–1758. 82.Kukushkin A.B., Minashin P.V., Neverov V.S Electron cyclotron power losses in fusion reactor-grade tokamaks: scaling laws for spatial profile and power loss // 22nd IAEA Fusion Energy Conf., Geneva, 2008. TH/P3-10. 83. ., // ., . . . 2008. . 3. . 82–87. 84.Romanelli F., Giruzzi G. A D–3He fusion reactor with an edge radiating layer // Nucl. Fusion. 1998. V. 38. P. 103–109. - 410 85.Karney C.F.F. Fokker–Planck and quasilinear codes // Computer Phys. Reports. 1986. V. 4. P. 183–244. 86.Rosenbluth M.N., M cDonald W.M., Judd D.L. Fokker Planck equation for an inverse-square force // Phys. Rev. 1957. V. 107. P. 1–6. 87. . // . 1958. . 34. . 1341–1343. 88.Devaney J.J., Stein M.L. Plasma energy deposition from nuclear elastic scattering // Nucl. Sci. Eng. 1971. V. 46. P. 323–333. 89.Nakao Y., Ohta M., Nakashima H. Effect of nuclear elastic scattering on ignition nd thermal instability characteristics of D–D fusion reactor plasma // Nucl. Fusion. 1981. V. 21. P. 973–979. 90.Choi C.K., Hsiao M.Y. Effect of nuclear elastic scattering on energetic fusion product slowing-down // Nucl. Fusion. 1983. V. 23. P. 195–200. 91.Perkins S.T., Kullen D.E. Elastic nuclear plus interference cross sections for light-charged particles // Nucl. Sci. Eng. 1981. V. 77. P. 20–93. 92.Drift Pumping of Tandem Mirror Thermal Barriers / D.E. Baldwin [et al.] // Plasma Phys. and Contr. Nucl. Fusion Research: Proc. 11th Int. Conf., Kyoto, 1986. Vienna: IAEA, 1986. P. 293–303. 93. ., . // . 1993. . 19. . 42–45. 94.Shabrov N.V., Khvesjuk V.I. Ion pumping from a mirror trap by an external rotating field // Fusion Technol. 1994. V. 26, No. 2. P. 117–124. 95.Khvesyuk V.I., Shabrov N.V., Lyakhov A.N. Ash pumping from toroidal and mirror magnetic confinement systems // Fusion Technol. 1995. V. 27 (1T). P. 406–408. 96.An alpha particle distribution function for mirror loss-cone type instability calcu- - 411 lations / S.K. Ho [et al.] // Fusion Technol. 1986. V. 10. P. 1171–1176. 97. ., . // . 2003. 98. . - . 1. . 55–65. . // . 2011. www.chemphys.edu.ru/pdf/2011-02-01-029.pdf ( . 11. 30.05.2012). 99.Bosh H.-S., Hale G.M. Improved formulas for fusion cross-sections and thermal reactivities // Nucl. Fusion. 1992. V. 32. P. 611–631. 100. Chaniotakis E.A., Sigmar D.J. Time dependent effects on fusion reactivity enhancement due to minority heating in D–3He tokamak // Nucl. Fusion. 1993. V. 33. P. 849–861. 101. . 11 B(p, )8Be* // . 2006. . 69, 9. . 1496–1497. 102. // . . 1957. . 32, 103. 1. . 67–74. ., . // . 1961. . 138, 3. . 581– 583. 104. ., // 105. . . 1962. . 146, . 3. . 581–584. // / . . . . . . 1972. . 112–213. 106. . . .: , 1977. : , - 412 107. . . .: , 1977. 108. Davidson R.C., Krall N.A. Anomalous transport in high-temperature plasmas with applications to solenoidal fusion systems // Nucl. Fusion. 1977. V. 17. P. 1313–1371. 109. Tang W.M. Microinstabilities theory in tokamak // Nucl. Fusion. 1978. V. 18. P. 1089–1160. 110. Horton W. Drift waves and transport // Rev. Mod. Phys. 1999. V. 71. P. 735– 778. 111. Wolf R.C. Internal transport barriers in tokamak plasmas // Plasma Phys. Contol. Fusion. 2003. V. 45. P. R1–R91. 112. A review of internal transport barrier physics for steady-state operation of tokamaks / J.W. Connor [et al.] // Nucl. Fusion. 2004. V. 44. P. R1–R49. 113. Itoh K., Itoh S.-I. The role of the electric field in confinement // Plasma Phys. Control Fusion. 1996. V. 38. P. 1–49. 114. Burrell K.H. Effects of E B velocity shear and magnetic shear on turbulence and transport in magnetic confinement devices // Phys. Plasmas. 1997. V. 4. P. 1499–1518. 115. Increased understanding of the dynamics and transport in ITB plasmas from multi-machine comparisons / P. Gohil [et al.] // Nucl. Fusion. 2003. V. 43. P. 708–715. 116. Burrell K.H. Turbulence behaviour in the presence of transport barrier // Plasma Phys. Control. Fusion. 2006. V. 48. P. A347–A363. 117. Toda S., Itoh K. Theoretical Analysis of Transport Barriers in Helical Systems // J. Plasma Fusion Res. SERIES. 2000. V. 3. 580–583. 118. Wagner F. A quarter-century of H-mode studies // Plasma Phys. Control. Fusion. 2007. V. 49. P. B1–B33. 119. - 413 -2 .] // . 2008. / . [ 6. . 48–52. 120. Transition to the improved confinement mode in torsatron U-3M in range of rare collision frequencies / V.K. Pashnev [et al.] // Problems of Atomic Science and Technology. Series: Plasma Physics. 2010. No. 6 (16). P. 17–20. 121. Improved confinement in RFP with electric field / V. Antoni [et al.] // Plasma Phys. Control Fusion. 2000. V. 42. P. 83–87. 122. , « / . » [ .] // . - . 1962. . 1. . 215–225. 123. Cooperative effects in a tenuous energetic plasma contained by a magnetic mirror field / C.C. Damm [et al.] // Phys. Fluids. 1965. V. 8. P. 1472–1488. 124. Ambipolar potential effect on a drift-wave mode in tandem-mirror plasma / A. Mase [et al.] // Phys. Rev. Lett. 1990. V. 64. P. 2281–2284. 125. Control of the radial electric field and of turbulent fluctuations in a tandem mirror plasma / A. Mase [et al.] // Nuclear Fusion. 1991. V. 31. P. 1725–1733. 126. . // / . . . . . . 1. .: , 1983. . 525–598. 127. . / // . . . . . . 2. .: , 1983. . 275–364. 128. Connor J.W., Wilson H.R. Survey of theories of anomalous transport // Plasma Phys. Control. Fusion. 1994. V. 36. P. 719–795. 129. Search for the ion temperature gradient mode in a tokamak plasma and comparison with theoretical predictions / C.L. Rettig [et al.] // Phys. Plasmas. 2001. V. 8. P. 2232–2237. 130. Progress in ITER Physics Basis. Chapter 2: Plasma confinement and transport - 414 / E.J. Doyle [et al.] // Nucl. Fusion. 2007. V. 47. P. S18–S127. 131. Improved model for transport driven by drift modes in tokamaks / F.D. Halpern [et al.] // Phys. Plasmas. 2008. V. 15. 012304 (11p.). 132. Conway G.D. Turbulence measurements in fusion plasmas // Plasma Phys. Control. Fusion. 2008. V. 50. 124026 (11p.). 133. Tynan G.R., Fujisawa A., McKee G. A review of experimental drift turbulence studies // Plasma Phys. Control. Fusion. 2009. V. 51. 113001 (77p.). 134. Particle transport in tokamak plasmas, theory and experiment / C. Angioni [et al.] // Plasma Phys. Control. Fusion. 2009. V. 51. 124017 (14p.). 135. ., . // . 1976. . 118, . 2. . 273–306. 136. Coppi B., Rosenbluth M.N., Sagdeev R.Z. Instabilities due to temperature gradients in complex magnetic field configurations // Phys. Fluids. 1967. V. 10. P. 582–587. 137. Gladd N.T., Horton W. Critical shear and growth rates for drift waves in a nonuniform current-carrying plasma // Phys. Fluids. 1973. V. 16. P. 879–887. 138. Hirshman S.P., Molvig K. Turbulent destabilization and saturation of the universal drift mode in sheared magnetic field // Phys. Rew. Lett. 1979. V. 42. P. 684–651. 139. Horton W., Choi D.-I., Tang W.M. Toroidal drift modes driven by ion pressure gradient // Phys. Fluids. 1981. V. 24. P. 1077–1085. 140. Migliuolo S., Sen A.K. Effect of nonuniform equilibrium electric field on ion temperature gradient instabilities // Phys. Fluids. 1990. V. B2. P. 3047–3051. 141. Hirose A. Skin size electromagnetic drift mode and anomalous transport // Phys. Fluids. 1991. V. B3. P. 1599–1608. 142. Hamaguchi S., Horton W. Effect of sheared flows on ion-temperaturegradient-driven turbulent transport // Phys. Fluids. 1992. V. B4. P. 319–328. - 415 143. Zhang Y.Z., Mahajan S.M. Edge turbulence scaling with shear flow // Phys. Fluids. 1992. V. B4. P. 1385–1387. 144. Wang X.-H., Diamond P.H., Rosenbluth M.N. Stability of ion-temperaturegradient-driven modes in the presence of sheared poloidal flows // Phys. Fluids. 1992. V. B4. P. 2402–2413. 145. Radially global gyrokinetic simulation studies of transport barriers / S.E. Parker [et al.] // Phys. Plasmas. 1996. V. 3. P. 1959–1966. 146. Weiland J., Holod I. Drift wave transport scalings introduced by varying correlation length // Phys. Plasmas. 2005. V. 12. 012505 (4p.). 147. Artun M., Tang W.M., Rewoldt G. Trapped ion mode in toroidally rotating plasma // Phys. Plasmas. 1995. V. 2. P. 3384–3400. 148. Horton W., Hong B.G., Tang W.M. Toroidal electron temperature gradient driven drift modes // Phys. Fluids. 1988. V. 31. P. 2971–2983. 149. Hirose A. Electron temperature gradient modes in tokamaks // Phys. Fluids. 1990. V. B2. P. 850–853. 150. Electron temperature gradient driven turbulence / F. Jenko [et al.] // Phys. Plasmas. 2000. V. 7. P. 1904–1910. 151. Jenko F., Dorland W., Hammett G.W. Critical gradient formula for toroidal electron temperature gradient modes // Phys. Plasmas. 2001. V. 8. P. 4096–4104. 152. Fluid description of electron temperature gradient driven drift modes / R. Singh [et al.] // Phys. Plasmas. 2001. V. 8. P. 4340–4350. 153. Holland C., Diamond P.H. A simple model of interactions between electron temperature gradient and drift-wave turbulence // Phys. Plasmas. 2004. V. 11. P. 1051–1043. 154. Li J., Kishimoto Y. Numerical study of zonal flow dynamics and electron transport in electron temperature gradient driven turbulence // Phys. Plasmas. 2004. V. 11. P. 1493–1510. 155. Electron transport and the critical temperature gradient / W. Horton [et al.] - 416 // Phys. Plasmas. 2004. V. 11. P. 2600–2606. 156. The role of electron-driven microinstabilities in particle transport during electron Internal Transport Barriers / E. Fable [et al.] // 34th EPS Conference on Plasma Phys., Warsaw, 2–6 July, 2007. ECA. 2007. V. 31F. P-1.100. 157. Size scaling of turbulent transport in magnetically confined plasmas / Z. Lin [et al.] // Phys. Rev. Lett. 2002. V. 88. 195004 (4p.). 158. Fluctuation characteristics and transport properties of collisionless trapped electron mode turbulence / Y. Xiao [et al.] // Phys. Plasmas. 2010. V. 17. 022302 (10p.). 159. Wei X., Sokolov V., Sen A.K. Experimental production and identification of electron temperature gradient modes // Phys. Plasmas. 2010. V. 17. 042108 (6p.). 160. ., . . .: - , 1979. 161. Dupree T.H. Nonlinear theory of drift-wave turbulence and enhanced diffusion // Phys. Fluids. 1967. V. 10. P. 1049–1055. 162. Guzdar P.N., Kleva R.G., Chen L. Shear flow generation by drift waves revisited // Phys. Plasmas. 2001. V. 8. P. 459–462. 163. Scaling properties of turbulence driven shear flow / Z. Yan [et al.] // Phys. Plasmas. 2010. V. 17. 012302 (8p.). 164. Nonlinear dynamics of shear flows and plasma rotation in a simple laboratory plasma system / G.R. Tynan [et al.] // Plasma Phys. Control. Fusion. 2009. V. 51. 124055 (6p.). 165. On the nonlinear turbulent dynamics of shear-flow decorrelation and zonal flow generation / G.R. Tynan [et al.] // Phys. Plasmas. 2001. V. 8. P. 2691–2699. 166. Secondary instability in drift wave turbulence as a mechanism for zonal flow and avalanche formation / P.H. Diamond [et al.] // Nuclear Fusion. 2001. V. 41. P. 1067–1080. 167. Bursty transport in tokamak turbulence: Role of zonal flows and internal - 417 transport barriers / S. Benkadda [et al.] // Nuclear Fusion. 2001. V. 41. P. 995– 1001. 168. Lashmore-Davies C.N., McCarthy D.R., Thyagaraja A. The nonlinear dynamics of the modulational instability of drift waves and the associated zonal flows // Phys. Plasmas. 2001. V. 8. P. 1521–1533. 169. Malkov M.A., Diamond P.H., Smolyakov A. On the stability of drift wave spectra with respect to zonal flow excitation // Phys. Plasmas. 2001. V. 8. P. 1554–1558. 170. Non-linear zonal dynamics of drift and drift-Alfven turbulence in tokamak plasmas / L. Chen [et al.] // Nuclear Fusion. 2001. V. 41. P. 747–754. 171. Malkov M.A., Diamond P.H., Rosenbluth M.N. On the nature of bursting in transport and turbulence in drift wave–zonal flow systems // Phys. Plasmas. 2001. P. 5073–5076. 172. Moestama R., Sheikh D., Weiland J. Self-consistent theory of zonal flows in ion temperature gradient turbulence // Phys. Plasmas. 2004. P. 4801–4807. 173. Zonal flows in plasma a review / P.H. Diamond [et al.] // Plasma Phys. Control. Fusion. 2005. V. 47. P. R35–R161. 174. Kim E. Theory of turbulence regulation by oscillatory zonal flows // Phys. Plasmas. 2006. V. 13. 022308 (5p.). 175. Miyato N., Kishimoto Y., Li J.Q. Nonlocal behaviour of zonal flows in tokamak plasmas // Plasma Phys. Control. Fusion. 2006. V. 48. P. A335–A340. 176. Physics of zonal flows / K. Itoh [et al.] // Phys. Plasmas. 2006. V. 13. 055502 (11p.). 177. Sen A.K., Sokolov V., Wei X. A new paradigm for plasma transport and zonal flows // Phys. Plasmas. 2006. V. 13. 055905 (7p.). 178. Neoclassical generation of toroidal zonal flow by drift wave turbulence / A.B. Mikhailovskii [et al.] // Phys. Plasmas. 2006. V. 13. 032502 (11p.). 179. Generation of zonal flows by ion-temperature-gradient and related modes in - 418 the presence of neoclassical viscosity / A.B. Mikhailovskii [et al.] // Phys. Plasmas. 2006. V. 13. 052516 (11p.). 180. Fujisawa A. A review of zonal flow experiments // Nucl. Fusion. 2009. V. 49. 013001 (42p.). 181. Dewhurst J.M, Hnat B., Dendy R.O. Finite Larmor radius effects on test particle transport in drift wave-zonal flow turbulence // Plasma Phys. Control. Fusion. 2010. V. 52. 025004 (11p.). 182. Spectral features of the geodesic acoustic mode and its interaction with turbulence in a tokamak plasma / T. Lan [et al.] // Phys. Plasmas. 2008. V. 15. 056105 (10p.). 183. Nonlinear self-interaction of geodesic acoustic modes in toroidal plasmas / M. Sasaki [et al.] // Phys. Plasmas. 2009. V. 16. 022306 (8p.). 184. Hagera R., Hallatschek K. Radial propagation of geodesic acoustic modes in up-down asymmetric magnetic geometries // Phys. Plasmas. 2010. V. 17. 032112 (5p.). 185. Miki K., Diamond P.H. Role of the geodesic acoustic mode shearing feedback loop in transport bifurcations and turbulence spreading // Phys. Plasmas. 2010. V. 17. 032309 (10p.). 186. Singh R., Kaw P.K., Weiland J. Non-linear features of electron temperature gradient mode and electron thermal transport in tokamaks // Nucl. Fusion. 2001. V. 41. P. 1219–1225. 187. Itoh S.-I., Itoh K. Possible maximum amplitude of streamers in drift wave turbulence // Plasma Phys. Control. Fusion. 2008. V. 50. 055002 (7p.). 188. Selective formation of streamers in magnetized cylindrical plasmas / N. Kasuya [et al.] // Nucl. Fusion. 2010. V. 50. 054003 (8p.). 189. Streamer simulation based on discontinuous Galerkin method with hierarchical reconstruction / C. Zhuang [et al.] // ArXiv e-prints. 2010. arXiv:0912.0081v3 30.05.2012). - 419 190. Intermittent convective transport carried by propagating electromagnetic filamentary structures in nonuniformly magnetized plasma / G.S. Xu [et al.] // Phys. Plasmas. 2010. V. 17. 022501 (22p.). 191. Cowley S.C., Kulsrud R.M., Sudan R. Considerations of ion-temperaturegradient-driven turbulence // Phys. Fluids. 1991. V. B3. P. 2767–2782. 192. Vranjes J., Shukla P.K., Poedts S. Velocity shear driven electron skin size vortices // Phys. Plasmas. 2001. V. 8. P. 3913–3920. 193. Throumoulopoulos G.N., Tasso H. Magnetohydrodynamic counter-rotating vortices and synergetic stabilizing effects of magnetic field and plasma flow // Phys. Plasmas. 2010. V. 17. 032508 (9p.). 194. Self-sustaining vortex perturbations in smooth shear flows / J.-H. Kim [et al.] // Phys. Plasmas. 2006. V. 13. 062304 (8p.). 195. Theory of anomalous transport in H-mode plasmas / S.-I. Itoh [et al.] // Phys. Rew. Lett. 1994. V. 72. P. 1200–1203. 196. Waltz R.E., Staebler G.M., Dorland W. A gyro-Landau-fluid transport model // Phys. Plasmas. 1997. V. 4. P. 2482–2496. 197. Hinton F.L. Thermal confinement bifurcation and L- to H-mode transition in tokamaks // Phys. Fluids. 1991. V. B3. P. 696–704. 198. Biglari H., Diamond P.H., Terry P.W. Influence of sheared poloidal rotation on edge turbulence // Phys. Fluids. 1990. V. B2. P. 1–4. 199. Momentum-energy transport from turbulence driven by parallel flow shear / J.Q. Dong [et al.]// Phys. Plasmas. 1994. V. 1. P. 3250–3261. 200. Pakyari A., Pavlenko V.P. Stationary turbulent spectra of toroidal i mode // Phys. Plasmas. 1996. V. 3. P. 3628–3635. 201. Dupree T.H. Nonlinear Theory of Low-Frequency Instabilities // Phys. Fluids. 1968. V. 11. P. 2680–2694. 202. Garbet X., Waltz R.E. Action at distance and Bohm scaling of turbulence in tokamaks // Phys. Plasmas. 1996. V. 3. P. 1898–1907. - 420 203. Drift wave test particle transport in reversed shear profile / W. Horton [et al.] // Phys. Plasmas. 1998. V. 5. P. 3910–3917. 204. Global drift wave map test particle simulations / J.-M. Kwon [et. al] // Phys. Plasmas. 2000. V. 7. P. 1169–1180. 205. Khvesyuk V.I., Chirkov A.Yu., Pshenichnikov A.A. Analysis of influence of the radial electric field on turbulent transport in a tandem mirror plasma // J. Plasma Fusion Res. SERIES. 2000. V. 3. P. 150–153. 206. Khvesyuk V.I., Chirkov A.Yu. Stochastic drift wave model for anomalous transport in tandem mirror and FRC // Fusion Technol. 2001. V. 39, No. 1T. P. 398–401. 207. ., . . ./ . 208. . . ., ., // 210. .: , 1984. . . 209. : . : , 1988. . - . 1971. . 105, . 1. . 3–39. . // . . 13. / - . . . .: : , 1984. . 3–73. 211. . . .: - , 2000. 212. D’Angelo F., Paccagnella R. Stochastic diffusion in presence of mode locking in a reversed field pinch // Plasma Phys. Control. Fusion. 1996. V. 38. P. 313– 323. 213. Chaotic transport in reversed shear tokamaks / F.A. Markus [et al.] // Nucl. Fusion. 2008. V. 48. 024018 (8p.). 214. On the accuracy of some mapping techniques used to study the magnetic field dynamics in tokamaks / D. Constantinescu [et al.] // Nucl. Fusion. 2008. V. 48. - 421 024017 (9p.). 215. Collisionless plasma transport across loop magnetic field / W. Horton [et al.] // Phys. Fluids. 1991. V. B3. P. 2192–2199. 216. Horton W., Tajima T. Collisionless conductivity and stochastic heating of the plasma sheet in the geomagnetic tail // J. Geophys. Res. 1991. V. 96. P. 15,811– 15,829. 217. Kostyukov I.Yu., Rax J.M. Stochastic heating in field-reversed low pressure discharge // Phys. Plasmas. 2000. V. 7. P. 185–192. 218. . // 219. . 1997. . 67, 2. . 94–99. . // 69, . 1999. . . 5. . 106–110. 220. / . [ .] // . 2009. . 89, . 9. . 528–534. 221. Neishtadt A.I. Averaging, passages through resonances, and captures into resonance in dynamics of charged particles // Proc. IV Int. Conf. Frontiers of Nonlinear Physics, Nizhny Novgorod, 2010. P. 44–45. 222. . // . 223. . 1989. ., ., . 3. . 65–68. . // 1997. . 23, 224. . . 21. . 37–39. ., . // . 2004. . 74, . 4. . 18– 26. 225. ., ., . - - 422 // . 2002. . 28. . 854–857. 226. Chirkov A.Yu., Khvesyuk V.I. Dynamics of plasma particles interaction with electric field fluctuations // Problems of Atomic Science and Technology. Series: Plasma Physics. 2002. V. 8, No. 5. P. 57–59. 227. : / . . . . . .: , 2003. 228. / . [ .] // - . 1994. . 20. . 1069–1076. 229. / . [ .] // . 1999. . 25. . 346–361. 230. / . [ .] // . 2002. . 28. . 128–143. 231. ., . // 232. . 2005. . 82, ., . 176, . . 6. . 395–406. // . 2006. 11. . 1177–1206. 233. . : . : - , 2003. 234. . . .: , 1958. 194 . 235. Drazin P. Introduction to hydrodynamic stability. Cambridge Univ. Press, 2002. 276pp. 236. Drazin P.G., Reid W.H. Hydrodynamic stability. Cambridge Univ. Press, 2004. - 423 237. ., . ./ 1963. // . . , II. . 83–205. 238. . // ./ , 1963. 239. . . : - III. . 206–264. . // 240. // : . 2003. . 173, ., . 2003. . 73, 7. . 757–768. . . 7. . 1–6. 241. Statistical properties and radial structure of plasma turbulence in the boundary region of the L2-M stellarator / G.M. Batanov [et. al] // Plasma Phys. Control. Fusion. 1998. V. 40. P. 1241–1250. 242. Ballistic transport phenomena in TJ-II / B.P. Van Milligen [et al.] // Nucl. Fusion. 2002. V. 42. P. 787–795. 243. Del-Castillo-Negrete D., Carreras B. A., Lynch V.E. Fractional diffusion in plasma turbulence // Phys. Plasmas. 2004. V. 11. P. 3854–3864. 244. Fractional diffusion models of non-local perturbative transport: numerical results and application to JET experiments / D. Del-Castillo-Negrete [et al.] // Nucl. Fusion. 2008. V. 48. 075009 (13p.). 245. ., . ., . : ; - , 2006. 246. Vázquez F., Márkus F. Non-Fickian particle diffusion in confined plasmas and the transition from diffusive transport to density waves propagation // Phys. Plasmas. 2010. V. 17. 042111 (5p.). 247. Chen Y.-J., Birdsall C.K. Lower-hybrid drift instability saturation mechanisms in one-dimensional simulations // Phys. Fluids. 1983. V. 26. P. 180–189. - 424 248. . // . 1972. . 110, . 3. . 329–355. 249. Ferraro R.D., Sanuki H., Littlejohn R.G., Fried B.D. A nonlocal analysis of drift and drift-cyclotron waves in cylindrical geometry // Phys. Fluids. 1985. V. 27. P. 2181–2187. 250. Khvesyuk V.I., Chirkov A.Yu. Turbulence of high-beta plasma // The US-Japan Workshop on Physics of High-Beta Plasma Confinement in Innovative Fusion. Report NIFS-PROC-41. National Institute for Fusion Science, Nagoya, Japan, 1999. P. 19–26. 251. Haines M.G., Martin P. The breaking of up–down symmetry of trapped particle orbits by a toroidal electric field // Phys. Plasmas. 1996. V. 3. P. 4536–4544. 252. . // . 2004. . 74, . 12. . 47–51. 253. Farengo R., Lee Y.C., Guzdar P.N. An electromagnetic integral equation: Application to microtearing modes // Phys. Fluids. 1983. V. 26. P. 3515–3523. 254. Dong J.Q., Guzdar P.N., Lee Y.C. Finite beta effect on ITG driven mode // Phys. Fluids. 1987. V. 30. P. 2694–2700. 255. Short wavelength ion temperature gradient instability in toroidal plasmas / Z. Gao [et al.] // Phys. Plasmas. 2005. V. 12. 022502 (10p.). 256. Hastings D.E., McCune J.E. The high- universal drift mode // Phys. Fluids. 1982. V. 25. P. 509–517. 257. Huba J.D., Gary S.P. Finite- stabilization of the universal drift instability: revisited // Phys. Fluids. 1982. V. 25. P. 1821–1823. 258. Horton W. Electromagnetic drift modes driven by pressure gradients in tokamak // Phys. Fluids. 1983. V. 26. P. 1461–1466. 259. Pu Y.-K., Migliuolo S. Finite beta stabilization of the kinetic ion mixing mode // Phys. Fluids. 1985. V. 28. P. 1722–1726. - 425 260. Linear and nonlinear description of drift instabilities in a high-beta plasmas / A.Y. Aydemir [et al.] // Phys. Fluids. 1987. V. 30. P. 3083–3092. 261. Tsang K.T., Cheng C.Z. Gyrokinetic simulation of microinstabilities in high temperature tokamaks // Phys. Fluids. 1991. V. B3. P. 688–695. 262. Artun V., Tang W.M. Nonlinear electromagnetic gyrokinetic equations for rotating axisymmetric plasmas // Phys. Plasmas. 1994. V. 1. P. 2682–2692. 263. Effects of finite plasma beta on the lower-hybrid-drift instability / R.C. Davidson [et al.] // Phys. Fluids. 1977. V. 20. P. 301–310. 264. Farengo R., Guzdar P.N., Lee Y.C. Stabilization of lower hybrid drift modes by finite parallel wavenumber and electron temperature gradients in fieldreversed configurations // Phys. Fluids. 1988. V. 31. P. 3299–3304. 265. Farengo R., Guzdar P.N., Lee Y.C. The effect of magnetized ions on lower hybrid drift instability in field reversed configurations // Phys. Fluids. 1989. V. B1. P. 1654–1658. 266. Farengo R., Guzdar P.N., Lee Y.C. Collisionless electron temperature gradient-driven instability in field-reversed configurations // Phys. Fluids. 1989. V. B1. P. 2181–2185. 267. Chirkov A.Yu., Khvesyuk V.I. Electromagnetic drift instabilities in highplasma under conditions of a field reversed configuration // Phys. Plasmas. 2010. V. 17. 012105 (8p.). 268. Study of electromagnetic instabilities driven by ion temperature gradient and parallel sheared flows in high- plasmas / Z. Gao [et al.] // Phys. Plasmas. 2001. V. 8. P. 4080–4089. 269. Effects of and Te/Ti on the ion temperature gradient modes in anisothermal plasmas / Z. Gao [et al.] // Phys. Plasmas. 2001. V. 8. P. 2816–2823. 270. Ion temperature gradient driven instability in high beta plasmas of a sheared slab / S. Liu [et al.] // Phys. Plasmas. 2009. V. 16. 012302 (7p.). 271. Antonsen T.M., Jr., Lane B. Kinetic equations for low frequency instabilities - 426 in inhomogeneous plasmas // Phys. Fluids. 1980. V. 23. P. 1205–1214. 272. Catto P.J., Tang W.M., Baldwin D.E. Generalized gyrokinetics // Plasma Phys. 1981. V. 23. P. 639–650. 273. Dong J.Q., Horton W., Kishimoto Y. Gyrokinetic study of ion temperature gradient instability in vicinity of flux surfaces with reversed magnetic shear // Phys. Plasmas. 2001. V. 8. P. 167–173. 274. Gyrokinetic theory of drift waves in negative shear tokamaks / Y. Idomura [et al.] // Nucl. Fusion. 2001. V. 41. P. 437–445. 275. Chen Y., Parker S. Gyrokinetic turbulence simulations with kinetic electrons // Phys. Plasmas. 2001. V. 8. P. 2095–2100. 276. Snydera P. B., Hammett G.W. A Landau fluid model for electromagnetic plasma microturbulence // Phys. Plasmas. 2001. V. 8. P. 3199–3216. 277. Dong J.Q., Sanuki H., Itoh K. Gyrokinetic study of the electron temperature gradient instability in plasmas with slightly hollow density profiles // Phys. Plasmas. 2001. V. 8. P. 3636–3644. 278. Candya J., Waltz R.E., Dorland W. The local limit of global gyrokinetic simulations // Phys. Plasmas. 2004. V. 11. P. L25–L28. 279. Bakera D.R. A perturbative solution of the drift kinetic equation yields pinch type convective terms in the particle and energy fluxes for strong electrostatic turbulence // Phys. Plasmas. 2004. V. 11. P. 996–992. 280. Qin H., Tang W.M. Pullback transformations in gyrokinetic theory // Phys. Plasmas. 2004. V. 11. P. 1052–1063. 281. A full radius gyrokinetic stability analysis for large aspect ratio finite- tokamaks / R. Ganesh [et al.] // Phys. Plasmas. 2004. V. 11. P. 3106–3130. 282. Wonga S.K., Chan V.S. A drift-kinetic approach to neoclassical transport theory for plasmas with large toroidal rotation // Phys. Plasmas. 2004. V. 11. P. 3432–3442. 283. Full f gyrokinetic simulation of FT-2 tokamak plasma / T.P. Kiviniemi [et al.] - 427 // Plasma Phys. Control. Fusion. 2006. V. 48. P. A327–A333. 284. Scott B. Gyrokinetic study of the edge shear layer // Plasma Phys. Control. Fusion. 2006. V. 48. P. A387–A392. 285. Waltz R. E., Staebler G.M. Gyrokinetic theory and simulation // Phys. plasmas. 2008. V. 15. 014505 (4p.). 286. Hahm T.S., Wang L., Madsen J. Fully electromagnetic nonlinear gyrokinetic equations for tokamak edge turbulence // Phys. Plasmas. 2009. V. 16. 022305 (11p.). 287. Role of stable eigenmodes in gyrokinetic models of ion temperature gradient turbulence / D.R. Hatch [et al.] // Phys. Plasmas. 2009. V. 16. 022311 (15p.). 288. Gyrokinetic simulations of spherical tokamaks / C.M. Roach [et al.] // Plasma Phys. Control. Fusion. 2009. V. 51. 124020 (11p.). 289. Direct multiscale coupling of a transport code to gyrokinetic turbulence codes / M. Barnes [et al.] // Arxiv e-prints. 2009. arXiv:0912.1974v1 ( 30.05.2012). 290. Predebon I., Angioni C., Guo S.C. Gyrokinetic simulations of ion temperature gradient modes in the reversed field pinch // Phys. Plasmas. 2010. V. 17. 012304 (7p.). 291. Barnes M., Dorland W., Tatsuno T. Resolving velocity space dynamics in continuum gyrokinetics // Phys. Plasmas. 2010. V. 17. 032106 (13p.). 292. Brizard A.J. Exact energy conservation laws for full and truncated nonlinear gyrokinetic equations // Phys. Plasmas. 2010. V. 17. 042303 (11p.). 293. Ramos J. J.Fluid and drift-kinetic description of a magnetized plasma with low collisionality and slow dynamics orderings. I. Electron theory // Phys. Plasmas. 2010. V. 17. 082502 (15p.). 294. Madsena J. Second order guiding-center Vlasov–Maxwell equations // Phys. Plasmas. 2010. V. 17. 082107 (12p.). 295. AstroGK: Astrophysical Gyrokinetics Code / R. Numata [et al.] // Arxiv - 428 e-prints. 2010. arXiv:1004.0279v1 ( 30.05.2012). 296. Large scale dynamics in flux driven gyrokinetic turbulence / Y. Sarazin [et al.] // Nucl. Fusion. 2010. V. 50. 054004 (10p.). 297. Gyrokinetic simulations of turbulent transport / X. Garbet [et al.] // Nucl. Fusion. 2010. V. 50. 043002 (30p.). 298. ., . 299. . .: , 1987. . // . 1966. . 6. . 93–100. 300. Scott B. Low frequency fluid drift turbulence in magnetized plasma. Dusseldorf: Heinrich-Heine-Universitat, 2000. 354 p. 301. Simakov A.N., Catto P.J. Drift-ordered fluid equations for field-aligned modes in low- collisional plasma with equilibrium pressure pedestals // Phys. Plasmas. 2003. V. 10. P. 4744–4757. 302. Vranjes J., Poedts S. On the role of perpendicular electron collisions in drift and acoustic wave instabilities // Phys. Plasmas. 2009. V. 16. 022101 (6p.). 303. Artun M., Tang W.M. Gyrokinetic analysis of ion temperature gradient modes in the presence of sheared flows // Phys. Fluids. 1992. V. B4. P. 1102–1114. 304. ., . // . http://technomag.edu.ru/doc/119255.html ( 305. ., 306. ., 4. 30.05.2012). . // . 2009. 2009. . - 1. . 21–30. . // . 2009. 6. . 67–76. - - 429 307. Observation of turbulence exponential wave number spectra at ion subLarmor scales in FT-2 tokamak / Gurchenko A.D. [et al.] // Plasma Phys. Control. Fusion. 2010. V. 52. 035010 (10p.). 308. Krall N.A., Rosenbluth M.N. Universal instability in complex field geometries // Phys. Fluids. 1965. V. 8. P. 1488–1503. 309. Pearlstein L.D., Berk H.L. Universal eigenmode in a strongly sheared magnetic field // Phys. Rev. Lett. 1969. V. 23. P. 220–222. 310. Hahm T.S., Tang W.M. Properties of ion temperature gradient drift instability in H-mode plasmas // Phys. Fluids. 1989. V. B1. P. 1185–1192. 311. Chirkov A.Yu. Plasma turbulence in localized sheared flows // Problems of Atomic Science and Technology. Series: Plasma Physics. 2007. V. 13, No. 1. P. 58–60. 312. Timofeev A.V., Tupikov S.E. Drift instability in non uniform electric field // Fusion Technol. 1999. V. 35, No. 1T. P. 253–257. 313. Perkins F.W., Jassby D.L. Velocity shear and low-frequency plasma instabilities // Phys. Fluids. 1971. V. 14. P. 102–115. 314. Jassby D.L. Transverse velocity shear instabilities within a magnetically confined plasma // Phys. Fluids. 1972. V. 15. P. 1590–1604. 315. Ganguli G., Lee Y.C., Palmadesso P.J. Kinetic theory for electrostatic waves due to transverse velocity shears // Phys. Fluids. 1988. V. 31. P. 823–838. 316. Glowienka J.C., Jennings W.C., Hickok R.L. Experimental investigation of a coherent flute instability using a heavy ion beam probe // Phys. Fluids. 1988. V. 31. P. 2704–2709. 317. ., . // . 1990. . 16, . 6. . 700–709. 318. Timofeev A.V. Convective modes in plasma with the strong shear of E × B drift velocity // Plasma Phys. Control. Fusion. 2001. V. 43. P. L31–L35. - 430 319. . - E B- // VII : . ., 2006. . 186–189. 320. // . . 1970. . 102, . 2. . 185–210. 321. Michalke A. On the inviscid instability of the hyperbolic-tangent velocity profile // J. Fluid. Mech. 1964. V. 19. P 543–556. 322. Zhuang M., Dimotakis P.E., Kubota T. The effect of walls on a spatially growing supersonic shear layer // Phys. Fluids. 1990. V. A2. P. 599–604. 323. Sandham N.D., Reynolds W.C. Thee-dimensional simulations of large eddies in the compressible mixing layer // J. Fluid. Mech. 1991. V. 224. P 133–158. 324. Miura A. Compressible magnetohydrodynamic Kelvin–Helmholtz instability with vortex pairing in the two-dimensional transverse configuration // Phys. Plasmas. 1997. V. 4. P. 2871–2885. 325. Nonlinear vortex dynamics in an inhomogeneous magnetized plasma with a sheared velocity field / A. Tenerani [et al.] // Plasma Phys. Control. Fusion. 2011. V. 53. 015003 (13p.). 326. ., . // : - 0321001780 ( ). 1-4 (11 .). 327. Bolshakova A.D., Chirkov A.Yu., Khvesyuk V.I. Scaling laws for electrostatic collisionless drift instabilities // ArXiv e-prints. 2010. arXiv:1009.2298v1 30.05.2012). 328. Vianello N., Antoni V., Spada E., et al. Reynolds and Maxwell stress measurements in the reversed field pinch experiment Extrap-T2R // Nucl. Fusion. 2005. V. 45. P. 761–766. - 431 329. / . [et al.] // . 1981. . 7. . 414–418. 330. Connor J.W. A review of models for ELMs // Plasma Phys. Control. Fusion. 1998. V. 40. P. 191–213. 331. Diamond P.H., Hasegawa A., Mima K. Vorticity dynamics, drift wave turbulence, and zonal flows: a look back and a look ahead // Plasma Phys. Control. Fusion. 2011. V. 53. 124001 (23p.). 332. . // . 333. . 2008. ., 3. . 3–16. . // . 1971. . 103, . 2. . 193–232. 334. . , // ’ 2006 / . . : . , . , . - , 2007. . 139 150. 335. Chirkov A.Yu. Dynamics of finite amplitude non-linear waves in sheared flows of fluids and plasmas // Proc. III Int. Conf. Frontiers of Nonlinear Physics, Nizhny Novgorod Saratov, 2007. P. 52 53. 336. ., . , // . 2006. . 12, . 6. . 112–114. 337. Tasso H. A non-linear equation for drift waves // Phys. Lett. A. 1997. V. 232. P. 247–251. 338. ., . .: 339. . . . VI. , 1988. . // . - . 2011. . 4. . 72–79. - - 432 340. Khvesyuk V.I. Excitement of local non-uniformities in plasma by unstable ion-temperature-gradient waves // Jornal Fusion Ener. 2012. V. 31. 341. . 342. . .: , 1976. . // . . 2006. 2. . 115–125. 343. Steinhauer L.C. Formalism for multi-fluid equilibria with flow // Phys. Plasmas. 1999. V. 6. P. 2734–2741. 344. Steinhauer L.C., Guo H.Y. Nearby-fluid equilibria. II. Zonal flows in a high, self-organized plasma experiment // Phys. Plasmas. 2006. V. 13. 052514 (8p.). 345. . . . . / . 346. : . . . , 1972. . 77–111. ., . . . . . .: , 2002. 347. Tuszewski M., Smirnov A., Deng B.H., et al. Combined FRC and mirror plasma studies in the C-2 device // Fusion Sci. Technol. 2011. V. 59 (1T). P. 23– 26. 348. Field reversed configuration transport. Theory and measurement of flux, energy, and particle lifetimes / A.L. Hoffman [et al.] // Plasma Physics and Controlled Nuclear Fusion Research: Proc. 11th Int. Conf., V. 2, IAEA, Vienna, 1987. P. 541–549. 349. Electron energy confinement in field reversed configuration plasmas / D.J. Rej [et al.] // Nucl. Fusion. 1990. V. 30. P. 1087–1094. 350. Flux confinement measurements in large field-reversed configuration equilibria / Rej [et al.] // Phys. Fluids. 1990. V. B2. P. 1706–1708. 351. Hoffman A.L., Slough J.T. Field reversed configuration lifetime scaling based on measurements from the large s experiment // Nucl. Fusion. 1993. V. 33. P. 27–38. - 433 352. Transport, energy balance, and stability of a large field-reversed configuration / J.T. Slough [et al.] // Phys. Plasmas. 1995. V. 2. P. 2286–2291. 353. Advanced experiments on Field-Reversed Configuration at Osaka / K. Kitano [et al.] // Proc. of 1998 Int. Congress on Plasma Physics & 25th EPS Conf. on Contr. Fusion and Plasma Physics. Prague, 1998. 354. Steinhauer L. FRC data digest, 1996. Presented in: Iwasawa N., Ishida A., Steinhauer L.C. Tilt mode stability scaling in field-reversed configurations with finite Larmor radius effect // Phys. Plasmas. 2000. V. 7. P. 931– 934. 355. Guo H. Recent results on Field Reversed Configurations from the Translation, Confinement and Sustainment experiment // Plasma Sci. Technol. 2005. V. 7. P. 2605– 2609. 356. Recent FRC plasma studies / S. Okada [et al.] // Fusion Sci. Technol. 2007. V. 51, No. 2T. P. 193–196. 357. Dynamic formation of a hot field reversed configuration with improved confinement by supersonic merging of two colliding high- compact toroids / M.W. Binderbauer [et al.] // Phys. Rev. Lett. 2010. V. 105. 045003 (4p.). 358. Formation of a long-lived hot field reversed configuration by dynamically merging two colliding high- compact toroids / H.Y. Guo [et al.] // Phys. Plasmas. 2011. V. 18. 056110 (10p.). 359. Formation of a stable field reversed configuration through merging / G. Votroubek [et al.] // J. Fusion Energy. 2008. V. 27. P. 123–127. 360. Slough J., Votroubek G., Pihl C. Creation of a high-temperature plasma through merging and compression of supersonic field reversed configuration plasmoids // Nucl. Fusion. 2011. V. 51. 053008 (10p.). 361. Experimental investigation of three-dimensional magnetic reconnection by use of two colliding spheromaks / Y. Ono [et al.] // Phys. Fluids. 1993. V. B5. P. 3691–3701. 362. Spontaneous and artificial generation of sheared-flow in oblate FRCs in TS-3 - 434 and TS-4 FRC experiments / Y. Ono [et al.] // Nucl. Fusion. 2003. V. 43. P. 649– 654. 363. Mozgovoy A. Compact toroid formation in the inductive store // 30th EPS Conference on Contr. Fusion and Plasma Phys., St. Petersburg, 7-11 July 2003. ECA. 2003. V. 27A. P-2.198. 364. Slough J.T., Miller K.E. Flux generation and sustainment of a field reversed configuration with rotating magnetic field current drive // Phys. Plasmas. 2000. V. 7. P. 1945–1950. 365. Long pulse FRC sustainment with enhanced edge driven rotating magnetic field current drive / A.L. Hoffman [et al.] // Nucl. Fusion. 2005. V. 45. P. 176– 183. 366. Guo H.Y., Hoffman A.L., Steinhauer L.C. Observations of improved confinement in field reversed configurations sustained by antisymmetric rotating magnetic fields // Phys. Plasmas. 2005. V. 12. 062507 (6p.). 367. Experimental evidence of improved confinement in a high-beta field-reversed configuration plasma by neutral beam injection / T. Asai [et al.] // Phys. Plasmas. 2000. V. 7. P. 2294–2297. 368. Experiments on additional heating of FRC plasmas / S. Okada [et al.] // Nuclear Fusion. 2001. V. 41 P. 625–629. 369. Inomoto M., Asai T., Okada S. Neutral beam injection heating on fieldreversed configuration plasma decompressed through axial translation // Nucl. Fusion. 2008. V. 48. 035013 (8p.). 370. Hewlett D.V. Spontaneous development of toroidal magnetic field during formation of field-reversed theta pinch // Nucl. Fusion. 1984. V. 24. P. 349–357. 371. Milroy R.D., Brackbill J.U. Toroidal magnetic field generation during compact toroid formation in a field-reversed theta pinch and conical theta pinch // Phys. Fluids. 1986. V. 29. P. 1184–1195. 372. Wang M.Y., Miley G.H. Particle orbits in field-reversed mirrors // Nucl. Fu- - 435 sion. 1979. V. 19. P. 39–49. 373. Hsiao M.-Y., Miley G.H. Particle-confinement criteria for axisymmetric fieldreversed magnetic configurations // Nucl. Fusion. 1984. V. 24. P. 1029–1038. 374. Hsiao M.-Y., Miley G.H. Velocity-spase particle loss in field-reversed configurations // Phys. Fluids. 1985. V. 28. P. 1440–1449. 375. . // 376. . 1986. . 12. . 1292–1296. ., ., . // 1997. . 23, . 21. . 37–39. 377. Landsman A.S., Cohen S.A., Glasser A.H. Regular and stochastic orbits of ions in a highly prolate field-reversed configuration // Phys. Plasmas. 2004. V. 11. P. 947–957. 378. Losses of neutral beam injected fast ions due to adiabaticity breaking processes in a field-reversed configuration / T. Takahashi [et al.] // Phys. Plasmas. 2004. V. 11. P. 3131–3140. 379. Lifschitz A.F., Farengo R., Arista N.R. Monte Carlo simulation of neutral beam injection into a field reversed configuration // Nucl. Fusion. 2002. V. 42. P. 863–875. 380. Lifschitz A.F., Farengo R., Hoffman A.L. Calculations of tangential neutral beam injection current drive efficiency for present moderate flux FRCs // Nucl. Fusion. 2004. V. 44. P. 1015–1026. 381. Ferrari H.E., Farengo R. Current drive and heating by fusion protons in a D– 3 He FRC reactor // Nucl. Fusion. 2008. V. 48. 035014 (8p.). 382. Spenser R.L., Tuszewski M. Experimental and computational equilibria of field-reversed configurations // Phys. Fluids. 1985. V. 28. P. 1810–1815. 383. Steinhauer L.C. Improved analytic equilibrium for a field-reversed configuration // Phys. Fluids. 1990. V. B2. P. 3081–3085. - 436 - 384. Suzuki Y., Okada S., Goto S. Analysis of averaged value in two dimen- sional equilibria of a field-reversed configuration with end mirror fields // J. Plasma Fusion Res. SERIES. 1999. V.2. P. 218–221. 385. Barnes D.C. Profile consistency of an elongated field-reversed configuration. I. Asymptotic theory // Phys. Plasmas. 2001. V. 8. P. 4856–4863. 386. Barnes D.C. Profile consistency of an elongated field-reversed configuration. II. Two-dimensional solutions // Phys. Plasmas. 2001. V. 8. P. 4864–4869. 387. Cerfona A.J., Freidberg J.P. “One size fits all” analytic solutions to the Grad– Shafranov equation // Phys. Plasmas. 2010. V. 17. 032502 (9p.). 388. Steinhauer L.C. End-shorting and electric field in edge plasmas with application to field-reversed configurations // Phys. Plasmas. 2002. V. 9. P. 3851–3856. 389. Steinhauer L. Equilibrium rotation in field-reversed configurations // Phys. Plasmas. 2008. V. 15. 012505 (7p.). 390. . ., . // 1989. . 15, . 3. . 288–299. 391. . ., . . . . . , 75, , 1988. 392. Simulations of the field-reversed configuration with the NIMROD code / A.I.D. Macnab [et al.] // J. Fusion Energy. 2007. V. 26. P. 113–117. 393. The n = 1 rotational instability in field-reversed configurations / M. Tuszewski [et al.] // Phys. Fluids. 1990. V. B2. P. 2541–2543. 394. High-power magnetic-compression heating of field-reversed configurations / D.J. Rej [et al.] // Phys. Fluids. 1992. V. B4. P. 1909–1919. 395. Detection of electric field around field-reversed configuration plasma / T. Ikeyama [et al.] // Phys. Plasmas. 2010. V. 17. 012501 (8p.). 396. Observations of improved stability and confinement in a high- self-organized - 437 spherical-torus-like field-reversed configuration / H.Y. Guo [et al.] // Phys. Rev. Lett. 2005. V. 95. 175001 (4p.). 397. . // . 1981. . 7, . 5. . 973– 980. 398. / .] // . 1981. . 7, . [ . 5. . 981–985. 399. Stabilization of interchange modes by rotating magnetic fields / H.Y. Guo [et al.] // Phys. Rev. Lett. 2005. V. 94. 185001 (4p.). 400. . // . . . 1999. 5–6. . 106–115. 401. Nishimura K., Horiuchi R., Sato T. Tilt stabilization by cycling ions crossing magnetic separatrix in a field-reversed configuration // Phys. Plasmas. 1997. V. 4. P. 4035–4042. 402. Iwasawa N., Ishida A., Steinhauer L.C. Tilt mode stability scaling in fieldreversed configurations with finite Larmor radius effect // Phys Plasmas. 2000. V. 7. P. 931–934. 403. Omelchenko Y.A., Schaffer M.J., Parks P.B. Nonlinear stability of fieldreversed configurations with self-generated toroidal field // Phys. Plasmas. 2001. V. 8. P. 4463–4469. 404. Numerical study of global stability of oblate field-reversed configurations / E.V. Belova [et al.] // Phys. Plasmas. 2001. V. 8. P. 1267–1277. 405. Improved stability and confinement in a high- relaxed plasma state / H.Y. Guo [et al.] // J. Fusion Energy. 2007. V. 26. P. 53–56. 406. Krall N.A. Low-frequency stability for field reversed configuration parameters // Phys. Fluids. 1987. V. 30, No. 3. P. 878–883. 407. Krall N.A. The effect of low-frequency turbulence on flux, particle, and energy confinement in a field-reversed configuration // Phys. Fluids. 1989. V. B1. - 438 P. 1811–1817. 408. Krall N.A. Dumping of lower hybrid waves by low-frequency drift waves // Phys. Fluids. 1989. V. B1. P. 2213–2216. 409. Sobehart J.R., Farengo R. Low-frequency drift dissipative modes in fieldreversed configurations // Phys. Fluids. V. B2. 1990. P. 3206–3208. 410. Huba J.D., Drake J.F., Gladd N.T. Lower-hybrid-drift instability in field reversed plasmas // Phys. Fluids. 1980. V. 23. P. 552–561. 411. Hoffman A.L., Milroy R.D. Particle lifetime scalling in field-reversed configurations based on lower-hybrid-drift resistivity // Phys. Fluids. 1983. V. 26. P. 3170–3172. 412. Carlson A.W. A search for lower-hybrid-drift fluctuations in a field reversed configuration using CO2 heterodyne scattering // Phys. Fluids. 1987. V. 30. P. 1497–1509. 413. Estimation of the electrical resistivity in field reversed configuration plas- mas from detailed interferometric measurements / S. Okada [et al.] // Phys. Fluids. 1989. V. B1. P. 2422–2429. 414. Measurement of magnetic field fluctuation in a field-reversed-configuration plasma / Okada S. [et al.] // Fusion Technol. 1995. V. 27 (1T). P. 341–344. 415. Excitation and propagation of low frequency wave in a FRC plasma / Okada S. [et al.] // Nucl. Fusion. 2003. V. 43. P. 1140–1144. 416. Behaviour of a low frequency wave in a FRC plasma / Okada S. [et al.] // Nucl. Fusion. 2007. V. 47. P. 677–681. 417. Iwasawa N., Okada S., Goto S. Global eigenmodes of low frequency waves in field-reversed configuration plasmas // Phys. Plasmas. 2004. V. 11. P. 615–624. 418. . // . 2007. 2. . 31–36. 419. Comparison of low confinement mode transport simulations using the mixed Bohm/gyro-Bohm and the Multi-Mode-95 transport model / T. Onjun [et al.] - 439 // Phys. Plasmas. 2001. V. 8. P. 975–985. 420. Rej D.J., Tuszewski M. A zero-dimensional transport model for field-reversed configurations // Phys. Fluids. 1984. V. 27. P. 1514–1520. 421. Steinhauer L.C., Milroy R.D., Slough J.T. A model for inferring transport rates from observed confinement times in field-reversed configurations // Phys. Fluids. 1985. V. 28. P. 888–897. 422. Beta value at separatrix of field-reversed configuration / T. Ikeyama [et al.] // Phys. Plasmas. 2009. V. 16. 042512 (5p.). 423. ., . // . 2010. 2. . 176–192. 424. ., ., . . 1. . . . .: - , 1990, . 3.4.4. 425. Suzuki Y., Okada S., Goto S. Analysis of averaged value in two dimen- sional equilibria of a field-reversed configuration with end mirror fields // J. Plasma Fusion Res. SERIES. 1999. V.2. P. 218–221. 426. Takahashi T, Gota H, Nogi Y. Control of elongation for field-reversed configuration plasmas using axial field index of a mirror confinement field // Phys. Plasmas. 2004. V. 11. P. 4462–4467. 427. Kesner J., Mauel M. Plasma confinement in a levitated magnetic dipole // Plasma Physics Reports. 1997. V. 23. P. 742–750. 428. Production and study of high-beta plasma confined by a superconducting dipole magnet / D.T. Garnier [et al.] // Phys. Plasmas. 2006. V. 13. 056111 (8p.). 429. First Plasma in the RT-1 device / Z. Yoshida [et al.] // J. Plasma Fusion Res. 2006. V. 1. 008 (2p.). 430. Formation of high- plasma and stable confinement of toroidal electron plasma in Ring Trap 1 / H. Saitoh [et al.] // Phys. Plasmas. 2011. V. 18. 056102 (9p.). - 440 431. Helium catalysed D–D fusion in a levitated dipole / J. Kesner [et al.] // Nucl. Fusion. 2004. V. 44. P. 193–203. 432. Garnier D.T., Kesner J., Mauel M.E. Magnetohydrodynamic stability in a levitated dipole // Phys. Plasmas. 1999. V. 6. P. 3431–3434. 433. Dipole equilibrium and stability / J. Kesner [et al.] // Nucl. Fusion. 2001. V. 41. P. 301–308. 434. Furukawa M., Hayashi H., Yoshida Z. Stabilization of pressure-driven magnetohydrodynamic modes by separatrix in dipole plasma confinement // Phys. Plasmas. 2010. V. 17. 022503 (5p.). 435. Kesner J. Stability of electrostatic modes in a levitated dipole // Phys. Plasmas. 1997. V. 4. P. 419–422. 436. Kesner J. Stability of a plasma confined in a dipole field // Phys. Plasmas. 1998. V. 5. P. 3675–3679. 437. Kesner J., Hastie R.J. Electrostatic drift modes in a closed field line configuration // Phys. Plasmas. 2002. V. 9. P. 395–400. 438. Stabilization of a low-frequency instability in a dipole plasma / D.T. Garnier [et al.] // J. Plasma Phys. 2008. V. 74. P. 733–740. 439. / . [ . 2006. .] // . - . 4. . 68–76. 440. Baver D.A. The compact levitated dipole configuration for plasma confinement // J. Fusion Energy. 2011. V. 30. P. 428–432. 441. « [ 442. .] // . 2006. . 32, ., . . 1. . 65–70. . .: , 1985. 443. / . [ .] // . 1999. . 69, . 4. . 141–142. »/ . - - 441 444. Design and fabrication of the cryostat for the floating coil of the levitated dipole experiment (LDX) / A. Zhukovsky [et al.] // 16th Conf. on Magnet Technology, Tallahassee, Florida, 1999. zhukovsky_mt16.pdf ( 19.09.2011). 445. « . 1999. . 25, 446. http://www.psfc.mit.edu/ldx/pubs/ »/ . [ .] // . 17. . 57–61. ., . - -2003. . . // - : II- - 1. ., 2003. . 157–158. 447. Zonca F., Chen L., Santoro R.A. Kinetic theory of low-frequency Alfv´en modes in tokamaks // Plasma Phys. Control. Fusion. 1996. V. 38 P. 2011–2028. 448. Dong J., Chen L., Zonca F. Study of kinetic shear Alfven modes driven by ion temperature gradient in tokamak plasmas // Nucl. Fusion. 1999. V. 39. P. 1041– 1050. 449. Shear-Alfv´en waves in gyrokinetic plasmas / W.W. Lee [et al.] // Phys. Plasmas. 2001. V. 8. P. 4335–4440. 450. Falchetto G.L., Vaclavik J., Villard L. Global-gyrokinetic study of finite ef- fects on linear microinstabilities // Phys. Plasmas. 2003. V. 10. P. 1424–1436. 451. Observation of the ETG mode component of tokamak plasma turbulence by the UHR backscattering diagnostics / Gurchenko A.D. [et al.] // Nucl. Fusion. 2007. V. 47. P. 245–250. 452. Short wavelength electron temperature gradient instability in toroidal plasmas / Z. Gao [et al.] // Phys. Plasmas. 2005. V. 12. 022503 (7p.). 453. Short wavelength ion temperature gradient mode and coupling with trapped electrons / J. Chowdhury [et al.] // Phys. Plasmas. 2009. V. 16. 082511 (10p.). 454. Dannerta T., Jenko F. Gyrokinetic simulation of collisionless trapped-electron - 442 mode turbulence // Phys. Plasmas. 2005. V. 12. 072309 (8p.). 455. Waltz R. E., Candy J., Fahey M. Coupled ion temperature gradient and trapped electron mode to electron temperature gradient mode gyrokinetic simulations // Phys. Plasmas. 2007. V. 14. 056116 (8p.). 456. Pastukhov V.P. Collisional losses of electrons from an adiabatic trap in a plasma with a positive potential // Nuclear Fusion. 1974. V. 14. P. 3–6. 457. Collisional losses of electrostatically confined species in a magnetic mirror / R.H. Cohen [et al.] // Nuclear Fusion. 1978. V. 18. P. 1229–1243. 458. Rognlien T.D., Cutler T.A. Transition from Pastukhov to collisional confinement in a magnetic and electrostatic well // Nuclear Fusion. 1980. V. 20. P. 1003–1011. 459. Confinement of strongly anisotropic hot-ion plasma in a compact mirror / A.V. Anikeev [et al.] // J. Fusion Energy. 2007. V. 26. P. 103–107. 460. ., // . . 1970. . 100, 461. . 4. . 601–639. ., // . - . 2008. . 34. . 463–472. 462. . // 463. . 2009. . 35. . 472–481. . ~1 , . 96-84 . . , 1996. 464. Spatial profiles of fusion product flux in the gas dynamic trap with deuterium neutral beam injection / V.V. Maximov [et al.] // Nucl. Fusion. 2004. V. 44. C. 542–547. 465. . . 466. .: , 2007. § 17.3. / . - 443 .] // . . 1988. . 3. . 3–6. 467. / . [ . .] // . 1989. . 2. . 29–34. 468. Progress in ITER Physics Basis. Chapter 1: Overview and summary / M. Shimada [et al.] // Nucl. Fusion. 2007. V. 47. P. S1–S17. 469. . D–3He // . 2001. . . 2. . 37–43. 470. Bingren S. Core plasma characteristics of a spherical tokamak D–3He fusion reactor // Plasma Sci. Technol. 2005. V. 7. P. 2767–2772. 471. . // . 1967. . 93, . 4. . 675–701. 472. ., 473. . . .: , 2006. . . - .: , 2007. § 16.11. 474. Physics Design of ITER-FEAT / M. Shimada [et al.] // J. Plasma Fusion Res. SERIES. 2000. V. 3. P. 77–83. 475. ., ., . // . . 2010. . 3. . 55–74. 476. Stacey W.M. Tokamak demonstration reactors // Nucl. Fusion. 1995. V. 35. P. 1369–1384. 477. . . .: . - , 2008. 478. Miller R.L. System Perspectives of ARIES-ST // Japan-US workshop on fusion power plants and related advanced technology, Kyoto, March 24–26, 1999. - 444 P. 185–197. 479. Scaling of H-mode energy confinement with Ip and BT in the MAST spherical tokamak / M. Valovic [et al.] // Nucl. Fusion. 2009. V. 49. 075016 (8p.). 480. / . [ . .] // . 2010. . 4. . 26–35. 481. Physics and engineering basis of multi-functional compact tokamak reactor concept / R.M.O. Galvão [et al.] // Proc. 22nd IAEA Fusion Energy Conf., Geneva, 2008. IAEA-CN-116/FT/P3-20 (6 p.). 482. . // ? XXXVIII . .( ) . ., 2011. . 13. 483. D–3He .] // / . . . 1989. [ . 1. . 46–52. 484. Conceptual design of D–3He FRC reactor ARTEMIS / H. Momota [et al.] // Fusion Technol. 1992. V. 21. P. 2307–2323. 485. D–3He field reversed configuration fusion power plant / V.I. Khvesyuk [et al.] // Fusion Technol. V. 39, No. 1T. 2001. P. 410–413. 486. D–3He- . // . 2006. 487. ., . 4. . 57–67. . // . . XXXI . ., 2004. . 117. 488. An advanced fuel laser fusion and volume compression of p–11B laser-driven targets / G.H. Miley [et al.] // Fusion Technol. 1991. V. 19. P. 43–51. 489. Calculation of R-parameter and energy gain for aneutronic fusion in degen- - 445 erate p–11B plasma / S.N. Hosseini Motlagh [et al.] // J. Fusion Energy. 2008. V. 27. P. 161–167. 490. Rostoker N., Binderbauer M.W., Monkhorst H.J. Colliding beam fusion reactor // Science. 1997. V. 278. No. 5342. P. 1419–1422. 491. Rostoker N., Qerushi A., Binderbauer M. Colliding beam fusion reactors // J. Fusion Energy. 2003. V. 22. P. 83–92. 492. Volosov V.I. Aneutronic fusion on the base of asymmetrical centrifugal trap // Nucl. Fusion. 2006. V. 46. P. 820–828. 493. . . , ( , . , ) // . 2008. - . 1. . 31–39. 494. Nevins W.M., Carlson A. Feasibility of a colliding beam fusion reactor // Science. 1998. V. 281. No. 5375. P. 307. 495. Rostoker N., Binderbauer M., Skinner R. Classical scattering in a highs beta self-collider/FRC // Physics of High Energy Particles in Toroidal Systems (AIP Conf. Proc.), American Institute of Physics, New York, 1994. P. 168–185. 496. ., . // . 2000. . - . 3. . 28–35. 497. Spraker M.C., Ahmed M.W., Blackston M.A. The 11B(p, )8Be the - + and 11 B( , )11B reactions at energies below 5.4 MeV // J. Fusion Energy. 2012. V. 31. P. 357–367. 498. Haruki T., Yousefi H.R., Sakai J.-I. Simulations of plasma heating caused by the coalescence of multiple current loops in a proton-boron fusion plasma // Phys. Plasmas. 2010. V. 17. 032504 (5p.). 499. Lerner E.J., Krupakar Murali S., Haboub A. Theory and experimental program for p-B11 fusion with the dense plasma focus // J. Fusion Energy. 2011. V. 30. P. 367–376. - 446 500. Fusion reactions from >150 keV ions in a dense plasma focus plasmoid / E.J. Lerner [et al.] // Phys. Plasmas. 2012. V. 19. 032704 (8p.). 501. Prospects for pilot plants based on the tokamak, spherical tokamak and stellarator / J.E. Menard [et al.] // Nucl. Fusion. 2011. V. 51. 103014 (13p.). 502. Li experiments on T-11M and T-10 in support of a steady-state tokamak concept with Li closed loop circulation / S.V. Mirnov [et al.] // Nucl. Fusion. 2011. V. 51. 073044 (9p.). 503. A new high performance field reversed configuration operating regime in the C-2 device / M. Tuszewski [et al.] // Phys. Plasmas. 2012. V. 19. 056108 (8p.). 504. 2D properties of core turbulence on DIII-D and comparison to gyrokinetic simulations / M.W. Shafer [et al.] // Phys. Plasmas. 2012. V. 19, 032504 (12 p.). 505. Leconte M., Diamond P.H. Impact of resonant magnetic perturbations on nonlinearly driven modes in drift-wave turbulence // Phys. Plasmas. 2012. V. 19. 055903 (11p.). 506. Global simulations of tokamak microturbulence: finite- effects and collisions / A. Bottino [et al.] // Plasma Phys. Control. Fusion. 2011. V. 53. 124027 (11p.). 507. Formation of turbulent structures and the link to fluctuation driven sheared flows / T. Windisch [et al.] // Plasma Phys. Control. Fusion. 2011. V. 53. 124036 (9p.). 508. Validation of electron temperature gradient turbulence in the Columbia Linear Machine / X.R. Fu [et al.] // Phys. Plasmas. 2012. V. 19. 032303 (7p.). 509. Pusztai I., Candy J., Gohil P. Isotope mass and charge effects in tokamak plasmas // Phys. Plasmas. 2011. V. 18. 122501 (10p.). 510. Yu L., Zhang X., Sheng Z.-M. The dynamics of ion with electrostatic waves in a sheared magnetic field // Phys. Plasmas. 2011. V. 18. 122104 (11p.).