ДЦФrЪ Нo ЬД жШ Чн Ь ЛШ КЮж д Цн ЬЗo ЗКЗи К (The

реклама
 (The Criteria Used to Make Decisions on the Amount of Inventory)
* ! " *
#$%%& *
*
!"#$%%"& 1061 '& ()+ % ,! (&-10600
'"+ &
(% . ' /(
&234#5# 7%(/ "
(
(4$ %+ /&23#
/ "
(
(3%# $!((( 89: #& #(% . ;#"$!"+%4#
/ "
(
(4$ %+ /&!</ )/ ( "
(
(4$ %+ // %4/$ %, # ((( #
23 %8 (4 #(";#7", ABC analysis !=54$ %+ /!<(,
!
"
(
((<<
(Class) #<A (Class A) <B(Class B) 7",4##!
./ "
(
(
4$ %+ /&%/ @$
"###7"D9E 80/20 /$ 57# 7%7"/$ !!$(replenishment)<C(Class C) /3,=&23%#$!(make to stock: MTS)/$ =
43(@2. (make to order: MTO)@83 ((/!/ (
#7<A B &!<'#
/ "
(
(4$ %+ /(;#""33.86
,, -:%# "
(
(/ !!!@ Abstract
This research the purpose to set criteria for decision making in the quantity of inventory stock. To
reduce the amount of inventory of the storage plant a case study of plastic molding, This research by
collecting data from a given quantity of finished product inventory. Found that the problem isthe volumes of
finished inventories are much more than necessary. Due to the forecast of a factory method with dislocation.
Then define the analysis method using ABC Analysis with all finished product and how to control the
inventory of each group (Class) group A (Class A) and Group B (Class B), Use the determination level of the
„oµªš´œÃ¨„ª·š¥µ«µ­˜¦ržš¸
$GYDQFHG6FLHQFH
amount of finished product inventory in stock and shortage goods. Using the 80/20 theory as a basis for the
decision and used as Replenishment system (replenishment), Group C (Class C) change the method
manufacturing to store (make to stock: MTS), Is based on a purchase order (make to order: MTO), After
updating Forecasts in Group A and B found that. Can reduce the amount of inventory in stock 33.86 percent.
Keywords: Inventory management/ ABC analysis
"(< (" %#$!7+ /( "4$ %+ /
@83 (((/. '"#& 3<4
%&!/ )/ "
(
( @83 (< (=
7"" $!9 "
(
(+ (8.
((<(. /$ ((: #&
/# #4 , %!!= &23%#$!
!!
&ISO 2001:2008 GMP #
=5. ( # 71 #!<(/$ /
#!% (/^ (#!% #
5 # #4.=;" -- #/ %%!
(((7", & # /!
%=+!" /$ =+" 4 # (Delphi technique) 4 ;/3( = &23%#$ ! / )3 & !
2 &2.3 7 %# $ ! ((((;< & (& / " (
( 4 $ % + / % 4 " + "
(
(!(;<'+"( < (=7"
"
4$ %+ /;<&(&7%#< ( #
" + " (
( 4 7" ; < !'(
"
(
(4$ %+ /7/ %%! #(."(4
" + " (
( 4 $ % + / 4 #
537"7.(/ "
(
(4$ %+ /
#!#7" , ((time
series) / ! !!53;#" &23#/ "
(
((((<(<;/
',
7#4 , %7/ %%! "
< ( 3 + (8. . (
+< < ( ( , % (
7//3%4 8. (/(
/ #(.#4 , % &23 7"; #" / !
+< < ( /3 4 ) 2 " 3 # 8. 7#4 , % #:&
" (#" % 3 '2 /$ " 3 4 ) /$ < ( " + (" (
"% 7/ 2556 "7! %#
#/$ "9.09 "
<< ( "
#
/$ "52.79 "$!9 "
(
(
#/$ " 38.12 (4(
&[9\%(
<(, 2557) @83 (
"$! 9 "
(
( '2/$ "3
4
)7'/!(#"
! 3 # " (
(
( ( !<(/$ 3
5 (<(= /
2'#!/!%
" 4 $ % + / , %# $ ! " (
(
8.+<! 9('/!@83 ( !(
(($ #4 , %!! !%" (= /$ !!#8( !
"(<("<%
/3 /(!" ( %#$! " (
( 7+ / (
' # ! " /!#4 , %!!
= &23 %# $ ! /$ !!= ;< !
„oµªš´œÃ¨„ª·š¥µ«µ­˜¦ržš¸
$GYDQFHG6FLHQFH
& (&7" 7
" "&23 %#< (7" @83 (/$ =%& #
/! % =+"! /$ =+ " 4 #
(Delphi technique)
1.2 (((#
"+ "
(
(4$ %+ /%# $! / %%! 4
7"
"4$ %+ /!(#
" (+<7
( " @83 ( < ( =7"7 "&.2 3 7
( "#
/</
2. "+37"7#4
2.1 "+# #3(= (
=5. ( # 71 "(.(<#2
2554 '8( (
2557 %438 "+
2.2
"+ 4 73 ( @2. ' #! "+ 4 73 ( = ( =5
3. !
" +
3.1 !"+#( = 5" ( .(<#2
2554 '8 (
( 2557 4 # , ABC
Analysis 4#57< Class %
(#
3.2 4#,
!
"
(
(7< Class
3.2.1 =57Class A
Class B 7",
!
"
(
(#
&%" "#2
3.2.2 =57Class C
/3,%= &23%#$! (make to stock)
/$ = 43 (@2. (make to order) &23 #
/ "
(
(4$ %+ /
#./ #"
1. &23"(537"7.(/ "
(
(4$ %+ /(((<(
2. &23#/ "
(
(4$ %+ /3
%#$!( " 20
0&'0#"
1. "(537"7.(/ "
(
(4$ %+ /Class A, Class B
2. 37"7 % .( <#2
E
'8( 2557
3. ,&7", (
/1" 2 '%
1. ;#"537"7.(/ "
(
(4$ %+ /Class A, Class B
2. #/ " (
( 4 $ % + /3
%#$!(" 33.86
3. &23/$ (37"7.(/ "
(
('#!((((
#,#"
% ./$ 4#537"7
.( / " (
( 4$ %+ / &23#/ " (
( 7/ =/ ! !
/ " (
( 4 $ % + / < ( /!/ (
1. 89&/%%! (((
1.1 8 9&3 ;/(/ ) / )3 &!7((
2 / " (
(
4$ %+ /%4 47"&.23 7%#$!;<
„oµªš´œÃ¨„ª·š¥µ«µ­˜¦ržš¸
$GYDQFHG6FLHQFH
<'2 @2. @83 (7<#2 %
+ " < @2. 3 ((%4 #
=+"! /$ =+"& " ( " /# /! #
"(7
/ !!%/ "
(
(32+< %894%"+7
((% (&!/)
1.1 / "
(
(4$ %+ /
%4
1.2 &2.3%#$!;<&(&
1.3 #
" + "
(
( ( //+7< ( "
1.4 #
<
#
23(&
3.3 & % 53 7 "7 .(
/ "
(
(4$ %+ /7Class A Class B %" "#2#7"D9EE
80/20
3.4 /=.(/ "
(
(4$ %+ /7Class A Class B %"
" #2 %E80/20 #&
(/ !!
3#"%4/&"3
1. 7'0&-8
((<(. /$ ((: #&
/# #4 , %!!=&23%#$!
(make to stock) ""+<7((7"+
"
* <47&(((
#%
<:3(7/ 2556
7% 1 (/ )/ "
(
(4$ %+ /%4
„oµªš´œÃ¨„ª·š¥µ«µ­˜¦ržš¸
$GYDQFHG6FLHQFH
2.1.2 Class B /$ =53
#<23 (<( 1- 6 #2
#%!< ( Class B " % 4 =5 13 2.1.3 Class C /$ =53
#;< 6 #2 #%
!<( Class C " %4 =5 30 2. ,84##"%
2.1 4 " + #= 5
.( # 71 4 #7"
ABC Analysis #(.
2.1.1 Class A /$ =53
#<23 ( ;< 1 #2 #
%!<( Class A " %4 =528
",
",#3
#3 4+
4+ //%ůĂƐƐ%
%
ůĂƐƐ
‹Î‹µœ
µÎ œœªœ¦µ¥„µ¦
µœªœ
ªœ¦µ
ªœ
œ¦µ
¦ ¥„
¥ µ¦¦
400
30
2
20
100
0
Class
Cl
C
las
asss A
C
Cl
Class
las
asss B
Cl
C
Class
las
asss C
288
133
30
7% 2 %4=5.( #(((<(
2.2 4#,
!
"
(
(4$ %+ /7Class A Class B
2.2.1 =57Class A 2
=53#<23(;< 1
„oµªš´œÃ¨„ª·š¥µ«µ­˜¦ržš¸
#2 =57Class B #<23(
<( 1- 6 #2 #4"+ "(4
#/ !!!
==7<=5
$GYDQFHG6FLHQFH
7% 3 #/ !!!== (=5 xxx (Class A
(<#2 +<7.7# /$ "+
'3(
<. #/$ " &%
" "#2 #7"D9E E
80/20 #&% "
(
(4$ %+ /
(
(;"
3"80 "#2"20
2.2.2
4 " + #
"( <(#2
2554 '8( (
2557 / #"(%4
42 #2 7",
!
"
(
(#
4#
.(# %4 8 .
(.
<<! 500 #&%#
„oµªš´œÃ¨„ª·š¥µ«µ­˜¦ržš¸
$GYDQFHG6FLHQFH
% 1 "7<
. &23&%7.(/ "
(
(4$ %+ /
(
(
=5 xxx
&%(0#)
#.
&"/
&"//
&"/ 0<&
0-500
17
40.48
40.48
59.52
501-1000
1
2.38
42.86
57.14
1001-1500
0
0.00
42.86
57.14
1501-2000
7
16.67
59.52
40.48
2001-2500
2
4.76
64.29
35.71
2501-3000
9
21.43
85.71
14.29
3001-3500
3
7.14
92.86
7.14
3501-4000
3
7.14
100.00
0.00
#
42
100
2.2.3 #!D9EE80/20
#7" , & (&23 / ! ! #4 $ ! " + #
=5 <( xxx (class A .(<#2 2554 '8(#2 (
2557 / !!
,&. ( 4 , #(. Moving Average, Single
Exponential Smoothing, Double Exponential
Smoothing, Winter Method #&%"
<
#
23 (Mean Absolute Percentage
Error : MAPE) 433#
%(3 1 &!< = 5 <(
xxx (class A .(/ "
(
(
4$ %+ /
(
(!<(/$ %4 8 . <
.< (%4 500 ##
4/$ /$ "&23&%/ "
(
(
#!. #D9EE 80/20 %&!<.(
/ "
(
(33000 #<#2 %"
385.71 "#2"
14.29
„oµªš´œÃ¨„ª·š¥µ«µ­˜¦ržš¸
$GYDQFHG6FLHQFH
% 2 / !!,&(.( 4 , !,&(((
#
Minimum
Forecasting
Maximum
MAPE
Moving average
Single exponential smoothing
0
554
2,562
5,451
2,590
4,626
77
71
Double exponential smoothing
953
2,938
4,922
65
Winter method
669
1,661
2,653
20
Delphi ((
9,600
"&0"<&""%2557
2,805
"(3 9,600 ##% (7
%(32 23!!,&. (
#2 2557 +< 3 2,805 #23!
4 ,& (#", Winter
!.(#!/ "
(
(4$ %+ /#
Method < MAPE 433# 7#2 7"D9EE80/20 34 #;"3 3,000 #<
2557 "(<( 669 - 2,653 #
#2 &!< #7#2 2557 "
<
#
23 +<3" 20 23
%42,805 #
/ ! ! ! , & ((((
& " (7#2 2557 % 3 / !!,4 ##! "
(
(4$ %+ /<(z !##2 2557
#, 8/' ,HJ %<&""%2557
Winter method
,&(((
0#
669-2,653
9,600
4##!/ "
(
( #D9EE 80/20
3,000
"&0"<&""%2557
2,805
„oµªš´œÃ¨„ª·š¥µ«µ­˜¦ržš¸
$GYDQFHG6FLHQFH
7% 4 +
< "
(
(</" (/!/ (
=5 Class C /3,%=&23
%#$! (make to stock) /$ = 43 (@2. (make to order) #(/ !/ ( '#
/ " (
( 4 $ %+ /(;#" < /" 3"33.86
3#"
, & # /!
((((
<
#
23%#
% (+< 23 (%((( "#2
(%8(=7/ !<
. (3 4 7" " !(3 "
/&;/ 23 (%#7"( < (=
7"&.23%# $!;<&(& #(((;<
#" $! 9 " 4#,
!
@83 ((((& % < &
(
<474#
"(7
+ ( < 23 4 (% (
"(7"7/ ! (((;#"
$($
4
)7.(/ "
(
(
#&%" "#27"5
# 7%#7"D9E E80/20 &23#/ "
(
( #4#/ "
(
((
=57Class A Class B 7" /$ !! $ (replenishment) 7< „oµªš´œÃ¨„ª·š¥µ«µ­˜¦ržš¸
&&&
% &$) (. (2547). ' ' 8#.', 8 '13
"." .
& , / ))
! 5 %{(
.
,.(%'. (2547). ' /''
' 8 % L N1
&8 & O%&,
/ ))!5 %{(.
$GYDQFHG6FLHQFH
Giri, B. and Chauduri, K.S. (1998). Deterministic
Models of Perishable Inventory with
stock-dependent rate and nonlinear
holding cost. European journal of
Operation Research, 105(3), 467-474.
Magee, J.F. and Boodman, D.M. (1974).
Production Planning and Inventory
Control. New York: McGraw-hill.
Peterson, R. and Silver, E.A. (1979). Decision
Systems for Inventory Management
and Production Planning. New York:
John Wiley & Sons.
William, J.S. (2002). Operations Management.
New York: McGraw-hill.
&!. (2549). /!/ (!!! "
(
( #7" ABC Analysis.
+ 11", 185(1), 150-155.
, , (
. (2542). 7Q/''.
&,/ ))!5 %{(.
Ferguson, M., Jayaraman, V. and Souza, G.C.
(2007). Application of the EOQ model
with nonlinear holding cost to inventory
management of perishable. European
journal of Operation Research, 180(1),
485-490.
„oµªš´œÃ¨„ª·š¥µ«µ­˜¦ržš¸
$GYDQFHG6FLHQFH
Скачать