ИССЛЕДОВАНИЕ МЕРКУРИЯ С ИСПОЛЬЗОВАНИЕМ МЕТОДОВ КОСМИЧЕСКОЙ ГЕОДЕЗИИ Байрамов Т.Т. БГТУ имени В.Г. Шухова Белгород, Россия STUDY USING THE METHODS OF MERCURY SPACE GEODESY Bayramov T.T. BSTU behalf V.G.Shukhov Belgorod, Russia Меркурий, самая близкая к Солнцу планета Солнечной системы, астрономический знак . Среди больших планет имеет наименьшие размеры: её диаметр 4865 км (0,38 диаметра Земли), масса 3,304×1023кг (0,055 массы Земли или 1: 6025000 массы Солнца); средняя плотность 5,52 г/см3. М. принадлежит к планетам земной группы. Внутреннее строение До недавнего времени предполагалось, что в недрах Меркурия находится металлическое ядро радиусом 1800—1900 км, содержащее 60 % массы планеты, так как КА «Маринер-10» обнаружил слабое магнитное поле, и считалось, что планета с таким малым размером не может иметь жидкого ядра. Но в 2007 году группа Жана-Люка Марго подвела итоги пятилетних радарных наблюдений за Меркурием, в ходе которых были замечены вариации вращения планеты, слишком большие для модели с твёрдым ядром. Поэтому на сегодняшний день можно с высокой долей уверенности говорить, что ядро планеты именно жидкое. Рис.1. Внутреннее строение Меркурия 1. Кора, толщина — 100—300 км. 2. Мантия, толщина — 600 км. 3. Ядро, радиус — 1800 км. Процентное содержание железа в ядре Меркурия выше, чем у любой другой планеты Солнечной системы. Было предложено несколько теорий для объяснения этого факта. Согласно наиболее широко поддерживаемой в научном сообществе теории, Меркурий изначально имел такое же соотношение металла и силикатов, как в обычном метеорите, имея массу в 2,25 раза больше, чем сейчас. Однако в начале истории Солнечной системы в Меркурий ударилось планетоподобное тело, имеющее в 6 раз меньшую массу и несколько сот километров в поперечнике. В результате удара от планеты отделилась большая часть изначальной коры и мантии, из-за чего относительная доля ядра в составе планеты увеличилась. Подобная гипотеза, известная как теория гигантского столкновения, была предложена и для объяснения формирования Луны Однако этой версии противоречат первые данные исследования элементного состава поверхности Меркурия с помощью гаммаспектрометра АМС «Мессенджер», который даёт возможность измерить содержание радиоактивных изотопов: оказалось, что на Меркурии много летучего элемента калия (по сравнению с более тугоплавкими ураном и торием), что не согласуется с высокими температурами, неизбежными при столкновении. Поэтому предполагается, что элементный состав Меркурия соответствует первичному элементному составу материала, из которого он сформировался, близкому к энстатитовым хондритам и безводным кометным частицам, хотя содержание железа в исследованных к настоящему времени энстатитовых хондритах недостаточно для объяснения высокой средней плотности Меркуриях[1]. Ядро окружено силикатной мантией толщиной 500—600 км. Согласно данным «Маринера10» и наблюдениям с Земли толщина коры планеты составляет от 100 до 300 км[45]. Железно никелевое ядро Меркурия составляет около 3/4 его диаметра, то есть равно примерно размеру Луны. Это ядро очень массивное по сравнению с ядром других планет. Рельеф поверхности Меркурия С пролетной траектории космического аппарата “Маинер-10” в 1974 г. Было сфотографировано свыше 40% поверхности Меркурия с разрешением от 4 мм до 100 м, что позволило увидеть Меркурий примерно так же, как Луну в темноте с Земли. Обилие кратеров – наиболее очевидная черта его поверхности, которую по первому впечатлению можно уподобить Луне. И не случайно даже специалисты – селенологи, которым показали эти снимки вскоре после их получения приняли их за фотографии с Луны[2]. Действительно, морфология кратеров близка к лунной, их ударное происхождение не вызывает сомнений: у большинства виден очерченный вал следы выбросов раздробленного при ударе материала с образованием в ряде случаев характерных ярких лучей и поле вторичных кратеров. У многих кратеров различима центральная горка и террасная структура внутреннего склона. Интересно, что такими особенностями обладают не только практически все крупные кратеры диаметром свыше 40-70 км, но и значительно большее число кратеров меньших размеров, в пределах 5-70 км (конечно, речь здесь идет о хорошо сохранившихся кратерах). Эти особенности можно отвести как на счет большей кинетической энергии тел, выпадавших на поверхность, так и на счет самого материала поверхности. Степень эрозии и сглаживание кратеров различна. Например, хорошо заметные лучевые структуры говорят о том, что она невелика, в то же время у ряда кратеров сохранились едва заметные кромки. В целом меркурианские кратеры по сравнению с лунными менее глубокие, что также можно объяснить большей кинетической энергией метеоритов из-за большего, чем на Луне ускорения силы тяжести на Меркурии. Поэтому образующий при ударе кратер эффективнее заполняется выбрасываемым материалом. По этой же причине вторичные кратеры расположены ближе к центральному, чем на Луне, и отложения раздробленного материала в меньшей степени маскируют первичные формы рельефа. Сами вторичные кратеры глубже лунных, что опять же объясняется тем, что выпадающие на поверхность осколки испытывают большее ускорение силы тяжести. Так же, как и на Луне, можно в зависимости от рельефа выделить преобладающие неровные “материковые” и значительно более гладкие “морские” районы. Последние преимущественно представляют собой котловины, которых, однако, существенно меньше, чем на Луне, их размеры обычно не превышают 400-600 км. К тому же, некоторые котловины слабо различимы на фоне окружающего рельефа. Исключение составляет упоминавшаяся обширная котловина Канорис (Море Жары) протяженностью около 1300 км, напоминающая известное Море Дождей на Луне. Возможно, что имеются и другие подобные котловины на оставшейся пока не отснятой большей части поверхности планеты. Морфология обрамляющих валов, поля вторичных кратеров, структура поверхности внутри котловины Канорис дают основания предполагать, что при ее формировании было выброшено больше материала, чем при образовании Моря Дождей, и что в дальнейшем могли последовательно происходить процессы дополнительного проседания и поднятия дна, связанные с возможным оттоком магмы и изостатическим выравниванием. В преобладающей материковой части поверхности Меркурия можно выделить как сильно кратеризированные районы, с наибольшей степенью деградации кратеров, так и занимающие обширные территории старые межкратерные плоскогорья, свидетельствующие о широко развитом древнем вулканизме. Это наиболее древние сохранившиеся формы рельефа планеты. Равнинные районы морей и примыкающих к ним участков сформировались в более позднюю эпоху. Об этом можно судить по слабой насыщенности равнин относительно небольших размеров[1]. Выровненные поверхности котловин, очевидно, покрыты наиболее толстым слоем раздробленных пород – реголита. Наряду с небольшим числом кратеров здесь встречаются складчатые ребки, напоминающие лунные. Некоторые из примыкающих к котловинам равнинных участков, вероятно образовались при отложений выброшенного из них материала. Вместе с тем для большинства равнин найдены вполне определенные свидетельства их вулканического происхождения, однако это вулканизм более позднего времени, чем на межкратерных плоскогорьях. Создается впечатление, что по своей морфологии и возрасту эти районы Меркурия примерно аналогичны районам лунных морей и равнинных поверхностей Марса, образование которых обычно датируется периодом на рубеже около 3-4 млрд. лет назад. К этому периоду относят завершение этапа наиболее интенсивной бомбардировки планет крупными телами, в результате чего и образовались “моря” и другие крупные, иногда менее четко проявляющиеся кратеры. Если теперь сопоставить количество больших котловин и кратеров диаметром более 200 км на Меркурии, Луне и Марсе, то оказывается, что их плотность приблизительно обратно пропорционально площади поверхностей этих небесных тел, в то время как их поперечники отличаются всего вдвое. Отсюда следует, что число метеоритов в областях пространства, занимаемого этими планетами, могло быть примерно одинаковым. Понять это не так просто, как может показаться на первый взгляд. Ведь обычно исходят из представлений о том, что основным регуляторным источником метеоритов, “поставляемых” во внутренние области солнечной системы, служит астероидный пояс, а планеты находятся от него на разных расстояниях. Однако если принять во внимание, что помимо этого основного источника могут быть и другие подобные скопления астероидных тел за орбитой Плутона, также выполняющие функции “поставщиков” метеоритов, различие в расположении ближайших к Солнцу планет становится несущественным. Такое предположение кажется более вероятным, нежили приходящие на помощь в подобных случаях разнообразные “катастрофические” гипотезы. Известным американским ученым Г. Везеримом для объяснения наблюдаемых закономерностей была предложена гипотеза о катастрофическом разрушении астероида под действием приливных сил при его прохождении вблизи Земли и Венеры и последующего выпадения осколков. Осколки могли бы тогда распределиться в пределах области расположения планет земной группы приблизительно равномерно. При всей внешней привлекательности такого сценария нелишне, по-видимому, вспомнить философско-методологический принцип, согласно которому не надо изобретать сущности сверх необходимых. Другими словами, не надо привлекать экзотических объяснений, если можно ограничиться более простыми. Анализируя основные черты поверхности Меркурия мы обращали внимание как на многие сходства, так и на существенные различия с Луной. Внимательное изучение обнаруживает еще одну интереснейшую особенность, проливающую свет на историю формирования планеты. Речь идет о характерных следах тектонической активности в глобальном масштабе в виде специфических крутых уступов, или откосов-эскарпов[2]. Эскарпы имеют протяженность от 20-500 км и высоту склонов от нескольких сотен метров до 1-2 км. По своей морфологии и геометрии расположения на поверхности они отличаются от обычны тектонических разрывов и сбросов, наблюдаемых на Луне и Марсе, и скорее образовались за счет надвигов, наслоений вследствие напряжения в поверхностном слое, возникших при сжатии Меркурия. Об этом свидетельствует горизонтальное смещение валов некоторых кратеров. Некоторые из эскарпов подверглись ударной бомбардировке и частично разрушены. Это означает, что они образовались раньше, чем кратеры на их поверхности. По сжении эрозии этих кратеров можно прийти к заключению, что сжатие коры происходило в период образования “морей” около 4 млрд. лет назад. Наиболее вероятной причиной сжатия нужно, видимо, считать начало остывания Меркурия. Согласно другому интересному предположению, выдвинутому рядом специалистов, альтернативным механизмом мощной тектонической активности планеты в этот период могло быть приливное замедление вращения планеты примерно в 175 раз: от первоначально предполагаемого значения около 8 часов до 58,6 суток! Действительно, ряд хребтов, гилобов, линейчатых сегментов валов и эскарпов обладает преимущественной ориентацией в меридиональном направлении, с небольшим отклонением к западу и востоку, что как будто благоприятствует гипотезе. Вместе с тем нельзя исключить и того, что эти черты поверхности запечатлели внутренне напряжение в коре планеты под воздействием приливных возмущений от Солнца, игравших особенно важную роль при образовании таких структур в процессе сжатия Меркурия[2]. Атмосфера Меркурия Атмосфера Меркурия имеет крайне низкую плотность. Она состоит из водорода, гелия, кислорода, паров кальция, натрия и калия (рис. 1). Водород и гелий планета, вероятно, получает от Солнца, а металлы испаряются с ее поверхности. «Атмосферой» эту тонкую оболочку можно назвать лишь с большой натяжкой. Давление у поверхности планеты в 500 млрд раз меньше, чем у поверхности Земли (это меньше, чем в современных вакуумных установках на Земле)[3] . Тектоника плит Глобальная тектоника, геодинамическая теория, объясняющая движения, деформации и сейсмическую активность верхней оболочки Земли; современный вариант теории мобилизма. Основные положения тектоники плит базируются на представлениях о том, что литосфера подстилается более вязкой астеносферой, которая устанавливается по данным сейсмических и магнитотеллурических исследований, показавших снижение скорости распространения сейсмических волн и электрического сопротивления. Литосфера разделена на семь больших плит (Тихоокеанская, Евроазиатская, Северо-Американская, Южно-Американская, Африканская, Индо-Австралийская и Антарктическая). Кроме них, выделяются малые плиты. Границы между плитами проводятся по линейным сгущениям очагов землетрясений. Литосферные плиты движутся, сохраняя жёсткость и монолитность; испытывают взаимные горизонтальные перемещения трёх типов: расхождение (дивергенцию) в осевых зонах срединно-океанических хребтов, схождение (конвергенцию) по периферии океанов, в глубоководных желобах, где океанические плиты поддвигаются под континентальные; скольжение вдоль поперечных, трансформных разломов. Эти типы смещений устанавливаются по сейсмическим данным в результате определения механизмов смещения в очагах землетрясений. Расширение (спрединг ложа океанов) – это расхождение плит вдоль осей срединно-океанических хребтов и рождение новой океанической коры. Благодаря её поглощению в зонах подвига (субдукции) океанической коры в глубоководных желобах объём Земли остаётся постоянным. Причина перемещения литосферных плит в тепловой конвекции в мантии Земли. Данные глубоководного бурения с американского научноисследовательского судна «Гломар Челленджер», начатого в 1968 г., подтвердили правильность осн. положений тектоники лито-сферных плит, существование внутриплитных деформаций и магматизма, расслоённости плит по вертикали и др. В то же время остаётся ряд недоказанных, дискуссионных вопросов[4]. Данные от космических аппаратов Mariner 10, Messenger Mariner 10 трижды пролетел вблизи Меркурия, но Mariner 10 находился на орбите Солнца? А не Меркурия и его орбита частично совпадала с орбитой самого Меркурия, в связи с этим не удалось изучить 100% поверхности планеты, снимки были сделаны на площади около 45% всей поверхности планеты. У Меркурия было обнаружено магнитное поле, причем ученые не ожидали, что такая маленькая планета и так медленно вращающаяся будет иметь столь мощное магнитное поле. Спектральное изучение показало, что у Меркурия есть очень разряженная атмосфера[4]. Первые существенные телескопические исследования Меркурия после миссии Mariner 10 привели к открытию в его атмосфере натрия, это произошло в середине 1980-ых годов. Кроме того, изучения с более совершенных наземных радаров привело к созданию карт полушария, невидимого Mariner 10 и, в частности к открытию конденсированного материала в кратерах возле полюсов, возможно льда[4]. В 2008 исследования Messenger-а, позволило получить фотографии более 1/3 поверхности планеты. Исследование прошло в пределах 200 км от поверхности планеты и позволило рассмотреть много ранее неизвестных геологических особенностей. В 2011 Messenger вышел на орбиту Меркурия и начал исследования[4]. Литература 1.Кононович Э.В., Мороз В.И. Общий курс астрономии: Учебное пособие / Под ред. Иванова. – М.: Едиториал УРСС, 2001. 2.Грушинский Н.П. Теория фигуры Земли. Учебник для вузов. – М.: Наука, 1976. 3.Жарков В. Н. Внутреннее строение Земли и планет.-М.: Наука. Главная редакция физико-математической литературы, 1983.-416 с.