Невзоров А. Н. Явление глории и природа жидкокапельной

реклама
«
», 20,
8 (2007)
,
551.574.1:551.576.1:545.212.01-12
. .
, .
! "
.
# $ % 20.04.2007 &.
! '
( # !)
" # !) "
& , '
&!
* "
!
'
# !
*
" (! +
$ !)
# &
" &
*#
'
+'
$ +
, !
! ! * 1,81–1,82 #
( ! 20
.
, , ' &!
*
+ ! #
(!
*"!* * # & -, ( , "
+
,
'
" - "
. ! '
"
# " .#
(
.
&
/ " "
*"+ ! # + (! +
!) . # - " # , + #*/ - * "
(
*
,
- " # , ! A-" # .
#
,
&!
.
! . ) #
!) &
,
!) A-" # ,
#
!
!)
!)$
&
( , ' )
" " (!
+
! #* +
!! ".
'
*"!
,
&!
-,
# "!*( - " */ * # .
!)$ "
&
" !' (!%# !*
" + -&
$ (!
!
. # !
0! &!
% , #
(!%# ! "
& + " " # $"
&
( ,
. %/ &
) & ! "
(!%# !*
. ! . /
!
(«(
, »).
& # * . " # ) 1
'
*"!
!
( . 1)
,
– # !
#
).
&!
" (/
# "!
% &!
* ( , * " , !)
* * "
'
'
$ , . . (! '
!* . 2 .
* +
,
"
*,
1
"
#
+
" % #
,
'
*
*, # "
" %/ * " - " &!
.
&
# . / * * " 1
*"!
$ *
, '
(!
"
/ # !
! &
*
*
" ( "
- " , # ' + (! ' &
& .
3 ! ,
#
(4*
, "
*
, ' &!
*
'
(!%#
*
(! +
+
" + - &
$
. 0 °C, "
' !
,
+ (! + " + & *
( +),
# $
' %/ + * '
! #*
.
/ " "
. # +( ! ,
,0 +, '
*
(/ /
)
!) "
+ + ! # + (! + (5 )
*
#
(!
,
(! ".
# ,
"
*
#
!)
"
,
,
*
!)
#
$
+! .#
-" #
! #, , # & , (
. "
* "
!%'
" #
(!%#
-,
( , « (,
» (! '+
!! " # . [22].
!)
,
*
!
," ! !
'
), ' . #
!
" % "5
'
" &#
# .
+
. –40 ° , #
& * ,
",
" ! ,"# * ,
&# #
" [5, 11, 17].
! ,
( +#
+ (
. !, ' " (! +, &#
!
-' "
/ " %
! #*
'
$
, , !%'
* "
+ . # * " # , ' !)
! '
*
+! .#
- ( ' - " #
, " '
, " - "
,
674
"
$
' !
0 "
"*,
" # ,
/
.#
(!
[20] "
#
$
" "
, !)
! !
*,
# !
1,8÷1,9 [4].
(
) " / " 62
!) +
+ #
"
! (
* " " #, '
*"!
&!
! '
"
+
!)
,"
-" # -. 6
# " .#
%1 & " " #
" - "
&!
".
"
%
!)
# "!
, "
! '
" " #
!)#
#"
!)
!)
$
-
,
" ( !
& [6, 10, 12]. 6
5
* %
!
*/ *
)*
"*! # "
% "*,
, '
(!
"
) '
, !)
.
!
1.
"
) , & "
*
! # " ! (!
&!
"
, ! ) "
, '
# ! )
- "!
#
'
! & , # !) &
(4" &
* 1 & *"!
*,
&! (
! ) "
"*,) .# & +
" - "
(! . 6 . ! # %/
&!
"
+1
!) + (!%#
*+, ( (/
+
3
[3],
( "
+ (!%#
*+ "
! ,
! 30 $"
+
&
- &!
,"
!
+
!
" ,! '
"
*. 6 0
( , , ' ( " # ! ) ,
#
,
, ! )( ,
"*,
.#
( (
*"! *.
1. # . * &!
*
'
( ,
*
(! +
" + -&
$
. 0 °C, "
' !
(! + " + & *
, ' %/ + * '
! #*
.
3
(!%# ! ,
&
!
& (!
! '
&!
# "
& !
.
! $ ,
.#
! #*
!!
.
2. 6 4 !
"
1!
&!
*"!** *%/
' / " & # !)
&!
!)$ , "!
, $"
+ * ", ! "
+ #*/ + # & "
. .
# & . & &
'
- $
! .
" $
'
(!%#
*
.
( !
!
( . 1).
3. # !) *
! # " !)
) $" " " !)$ &! " !%'
" (*
% " 0 %%
,
+ #*/ % "
. " - . ! - *
,
"
'
0
% "
%% ' ). " " "
!)$
!* , " " # !)
"!
( . . ! . !)),
" # .# " - # & .
4. 2
(
" &# )
"
!)$ &!
.
#
–
* , ' !) ( !
! (
!)$
( .
. 1),
0
# (
"
.
5. ,
&! "
#
. ! &
*
" &
!)$ , !%' ! ) .# 1,5° 3,8°. 2 ( !)0
,
&!
,
,
" ! ,* '
, ( .
.
6.
+
&!
,
" #
- ,
,
*
) $" " ,
%
# $ % " ! ' " ) *
" 0
, '
(! .
(
,
*
! *, ! ,
* (! #
0
* &!
*
( ' " ,
"
( !
!
+ (! +.
'
(
&!
& ( ) ! &#
"
(!%#
*
! .
" #
.
! ,
, '
# *"!
*
" $ !
* 1
(
.
2.
, ' &!
* "
!
"!*
( -1
(
&
(! '
!* , (/
, . , &! * " ,
%
!) " "
(
, '
+ .#
.
"
, '
,
!)
" "
#! .
, '
$ &!
! )
!* ( ' - " #
, !
! !
* n = 1,33. - " !) , " $
(
&
* * "
!
(!
!
(
. " ! )
" ! (
+ 1
+ [2],
"
# ! ,
'
3
n ≈ 1,33
(
, [16]),
(
* ' ) . . #& (
"
(4*
, '
&
$
1 & *"!
*"
/
" .
.#
!* * # *#
$
"
(! ' +
!*+ " &
/ " # 5%!
[7]
'
!)
( , "
*
"!
&
" " &
,
(! ,
(+ #
& #!* ,#
* #
$
. 7 !
( # !)
(4*
*"!
*
/)% " ++" ! ,
#! .
" [7]
,"
" [15],
*
*
#
# ! .
*+
!)
.
1
" ,
# & -"
:
!)
*
*"
!) *
# !) [16]
"
"
!)#
*"!
% &!
?
. !
%, !), " ! 1 - # !
" # !
(4
" + # !)+
"
- + " - ",
! # "
+ (! ",
+ (!%# ! ) &! !) " , . , "
! )1
. 3
*,
/
.
#
) "
'
"
* *
! 3 "
!
/)%
&
, , (
- . .
0
,
* *
#
'
!*
!
(!
#
+
!) ( , '
"
' &
* *.
' "
,
- +
' & ( , ,
"
&
!!
"
!) " ("!
, . . # &!
* * β > 90ο, ( #
!), " ) & ! ϕ = 180ο – β &
(!%#
*
'
" .
6
.2
'
! 3
&! "
$
"
" ,
*
&
!*
( ' - " # (n ≈ 1,33) ,! ' + ,
" " (! ) &! " ϕ, +
+ #!*
# - &!
.
' "
!
#!*
+
!) + !
'
, " , !*
! !
*. # -" # n
#!
" " - " !
λ.
.# *
" * # .
#
' , '
! # (" ! '
, + %/ + $ !!*$ - " # & + ,"
+
( +,
[15]),
& !" 0
&! " * 0
& , " *
," %/ ! .
"
"
.2
! # " !)
) $" " "
'
# ! , "
$
,
" *
# - &!
. #
1
, ' "
*
!)
+ # "
.#
'
- # !)% #!* n ≈ 1,33
!)
*"!
, " - "
+ ! #
(! . 7 !
/ "
# "!* * ! # %/ - *#
) , +
" ' - .#
:
1) &!
.2
'
.
*
0 * *
" ! '
&!
(!%#
*, "
"
*
# * &!
* (! #
"
! . # $ -.
2)
'
- # ! +
#!* &!
&!
1,5 # 3,8ο (
' " % *
!*
∼ 8 # ∼ 16
"
#
,
'
$"
!)$
.
( , " ) *
!) " (!
'
#
+
!). *
) (!
-"
# , " #
' .
"
%
" *
)%
! ' *
&!
(! .
"
.
(
)
,
,
!)
+
'
675
1
0,9
8-
, 12-
0,8
0,7
8
0,5
6
.
5
0,3
4
3
0,2
2
0,1
. 2. &! "
, #!*
" -
1
0
$
& (λ = 0,67
# !*
3)
!) +
. %/
4)
"
!)
#
&
'
( 2, 5, 8) ,
7
0,4
16
( 1, 4, 7) ,
9
0,6
0
, 16( 3, 6, 9)
1
2
3
,
*
& " (
, n = 1,334)
(
&
+
!)
!) "
" ,
, n = 1,328), . ! & (λ = 0,58
! .
" $
'
, !)
(
. " %
! $, #
' + !)$ , 1 , # '
"
!)$ .
'
# ! #!* n ≈ 1,33 " "
" &#
!* , "
"
"!
!* , $
# - &!
. (
1
$
+
!* , $
#
( .
).
( , , ( !)0
" # ! # ! (
&
* * #!* n ≈ 1,33
" 0
#
*"!
% &!
! "
,#
* # !)
"
#
, ! '
"
" - " ,
, ' "
$
"
*.
#
!
+
,
'
( ,
'
"
.
&
#
-
!%
4
!
" &
* *
%/
#
' ! ' ,
*
(! ' -
5
"!
"
6
!*
(λ = 0,42
'
%/
# -.
" # #
, n = 1,340).
(!
! %
'
'
%
, ( .
8, 12
.# #
-
!/
.
,( #
& -
"
*"! ,
3. "
+ .#
* &!
# &
"
,
" &
*"
' "
* * " #*
(n ∼ 1,33)
! #*
(n ∼ 1,31)
'
'
$
. !*
!) ( ' " #
* ( .
. ) (
. "
!)
,"
%
# .# " % # &
# !)
&!
(!%#
*
!
42°.
,' "5 (
. "
* " # , (! # %/ *
'
" - "
, ," !* (
/ " ,
,
"!* , ( , !)
"
)%)
) "
%
# & .
, !)
, ( .
# &
* " &! ,
(!%# !* ! '
" ,
*
&
"
!
'
+'
$–
!). + #*/ * ! ' ,
%/
# & , " + #*
,
# " # !) !
( , %/ # !
&!
" 0
( &!
# & ).
"
)
+ ! ' !!
" '
$ #
&
(!%# !* " " 0
(&
.
&! ,
,
. 3, ,# " *
!)$ "
, ( .
" 0
-*
(/
*
& " .2 ( ( ) ' ! " "
.
-, # & # !.
" ) *" !
!
*'
$, (! . -0
(!%# # *
" %/
676
&! "
. 3. +
'
* #" +
*# &
"
* , ( .
* &!
"
"
'
!)$ .
*
!
OS
MD
–
! '
! ' &
" ,
DO
DN – ! '
# & ,
!* ,
! .
"
- ' D, ' ( ! ' DO
! " &! , (!%# !* #
&!
ϕ
)% # & OS (ϕ = π – β, &# β – & !
* *).
* CO – ! ',
"
# ! . !) ! #*
!!
,! '
# & DN # &! & ! α ( . ,#. 4)
/
" - "
& *
+
.
. .
" % #"
#+ #
'
%
# & :
(! .
* &
'
*
*
*3 .
"
, !)
" #" + , "
- .#
( " - "
!) - &!
! . )
" #! "
#! . $
, '
# .
! '
# %
'
$
β( k ) = γ ( k ) − 2πj , &# j ≥ 0 – $ !
/
! " 0<β
* * , &! ,
(k)
40
30
20
< π. &! " (!%# !*
#
0
2
(1)
&!
*
' ! , (
' " %-
#
"!*
ϕ( k ) = π − β( k ) < π 2 .
# &
7
6
(
*
&
(2)
6
.4
,
'
, "
&! "
(!%#
* ϕ(k) # & (
&
* *
1-& # 7-&
*#
, !*
! !
* n
" %/ + *
( -, "
) ϕ(k)(λ),
. "
) n(λ) "! ' ,
( .
% "
!) !
# &
.# &
*# . ! ,
#!* ( ' - " # , " ! '
n " ! ' "
*
-#
! " -&
$ " #
&
,
# & k-&
*# ,
"
*
. 4
# %/ " -, # .
- *
" 0 ,
" ,
%/ " - –
"
-.
*#
$
#
"
&
'
&
#+ #
.
( # ) *, '
n ≈ 1,33 ' !
(! ) &! " + ,"
# &
,! ' +
*# "
"
" %
! # - # .# " - # & .
!* #
$ " ! '
n
&!
(!%#
*
# &
(
&
* *
(+ #
'
" ), '
&!
. 4 # & !%( &
*# k > 1 # !.
" .# ) * ( ! *
- # & - 1-&
*# .
%#
! # , '
( ! *
!)$ &!
, " #
#
# !)
&!
1,5 # 3,8°,
.
#! . )
!)
# &
" &
*#
'
+ '
$ +
, !
! !
*
! 1,8.
&
'
(! .
! 0) #!* &! " # &
'
"
"! * * ,"
!) (' ,
" ,
+ " +
)
" ! ' 1 + &! " , '
#" &
,"
%/ + ! ' +.
& ,
#
$
(
!) "
, &! "
!
!* , $
1!
- # & .
*3 " ( #
1 + &
'
-.
4
1
5
10
( k + 1) − n
.
( k + 1) 2 − 1
− 2( k + 1) arcsin
2
50
1 ( k + 1) 2 − n2
−
n ( k + 1) 2 − 1
2
60
1,3
1,4
1,5
1,6
. 4. &!
(!%#
* ϕ(k)
+
*# " k ≤ 7 ($
! !
*n
" %/ +
( ,
!)
1,7
1,8
# & (
" +) " , "
,
'
,
'
&
1,9
*
2
*
,
&
$
,! '!*
' -
.5
# "!
, !)
' "
#
* * " (!
&! "
!) &!
#!*
" %/ +
,! ' &
,
n = 1,81. ' ! " " !) "
* * I(ϕ) " ,
,
&#
,
!
.
# !) -0
d & ! " " + # ∼ 20
0
ϕm (n, d)
+ # ' , , '
* &! " &! ,
1
" 0
*
# "
. *.
'
(
. "
. ,'
$ !)&
1
$
!* , $
" %
! . !) - !* , $ , " # %/
"
* *
. 5.
, '
" (!
ϕ < 90°
" +
"
!* , $
* *
" % # &
,
"
0
" ,
.
6
3
1000,0
n = 1,81
d = 160
100,0
120
60 80
10,0
40
20
1,0
.
γ ( k ) ( n) = k π + 2arcsin
70
,
'
*
* # & [8]
"
! , + # " " + ! ' - "
# " # !) , ', !
! !
* n, " /
- !! !)
'
" . # & ( ,
* " , !)
+ .#
*'
! ' -,
.
+
"
'
- " +
,
" + #*/ + ,
! k
.
-.
! - & ! "
! ' -,
%/ +
# & k-&
*# ,
"!*
0,1
0
1
. 5.
#
n = 1,81 λ = 0,58
+
#
+
*"!*% *
2
3
* *,
'
(. ! - " ),
" %/ +
"
" (!
.6
,
, "
,! ' + d, ! '
.5. !*
"
*
" #
*
&
'
.
' 1
" * ! . &
'
&! "
"
3
d → ∞.
, + , "
+
- , '
" % #
.
, '
*"!
6
n
+
,
4
5
6
!
+
&! " &!
3
,! 'd
&!
" ! ' ,
" +,
! & '" * ϕ(1)(n),
' &
( # ) * [20],
,'
&!
(
# & .
" " # "
-
677
,
6
1
2
3
4
5
6
5
5
4
4
3
2
2
6
3
–
–
–
–
–
–
20
40
60
100
160
3,0
2,5
.
n = 1,81
2,0
n = 1,795
1,5
1
1,0
1
1,78 1,79 1,8 1,81 1,82 1,83 1,84 1,85 1,86 1,87 1,88
.
0,5
. 6.
! '
0,58
(1)
"
* ,
"
) &!
# & ϕ
, !*
3 #!*
,! ' + #
(. ! " )
*
'
*
&
'
-
!
!
"
* n,
λ=
#!*
0
0
&!
,( # '
"
"! (
5 ,
! ' #
'
+
!) n ≥ 1,8 " !)# # . / + (! +,
# "!
*
'
*
# !)
# &
"
" - "
(#
,
&! " +
,
", "*,) $" " '
,
, ,
!* , $ )
"
"
" 0
#
*"!
% &!
. + ,! ' " $" " - !
! &
(4*
)
,'
'
*
# !)
*
#
(! , " /
+
'
"
, "
"
*
0
!)$
!
!) &
, ( .
*
# !*% *
0
,
" (! ' +
!)
!)- #
"
& "
" +.
,(
,
"
" %/ +
!) , ( .
*
0
! +
+
# &
,! ' +
,
",
" ! # " ' & &
" * ' ),
- " 0,
, "
* ( !)0 - ' )% ( $" '
-.
,
.5 " # , ' $
!) !,
/ !)&!
( .
. 1),
"
. "
'
# !
&! " - 0
! , "
,
"
!), (! & # * '
*( ! .
( , ,
"
* &!
*
# "!*
( , $ % # &
" &
*# ,
" +
# . / + * " (!
! #
+
!*+
-" # .
- "
" +
. 6 ," !*
'
)" ! '
, !*
! !
* -" #
"
%
!) #
,
&. - $
- n = 1,8÷1,9 [4].
! " +
#
" &!
&
'
,
!)
« # & ( , %/ » ,
!) ( ( ! 20
),
" +
!)
,
!) " 5
*#
" [11],
# !
&!
∼ 1,5 # ∼ 3,8°
( ! "!
" *
" & " ! '
, !*
! !
*
.#
1,81
1,82 " . !
" .
!), * )
, '
0
,
"
&
. ! &
* "
'
("
# ! + & 0
+
#
$ )
*
"!*
1,20÷1,25,
" , .
)+ *( & ( $
)" ! '
n #!*
& $" . 6
.7
&! "
$
"
* *
d = 160
#!* #" + , ' , !*
! !
*
!): n = 1,81,
(! , !)
"
" %/ & . !
"
#!* A-" # ,
n = 1,795, " (
&
, ! " * +
*
,
&
0
*
.#
&!
&
. ! &
* ".
! '
,' "
!) - !
A-" #
n ∼ 1,795÷1,805.
678
1,0
. 7.
2,0
3,0
4,0
0
&! " + ,
! . ! #!*
"
, !*
! !
"
" %/ +
-
5,0
,
6,0
7,0
"
&
. ! &
' - $
,
*
A-" #
"
!) + ! +
8,0
* "
, ' -
#'
,' "
" #
,# ) ! ' "
$
*
#"
!) -,
" '
+
,
.# " &
'
, '
! .
&
. ! &
* " " (/ &!
# !*! ) " , !)
1
# !
)%.
*
-
4. #
! ) " 0 ,
* 3 #!* d ≤ 160
(
. "
*" +
,
" ! $, +"
" %/ +
.
# &
" &
*# .
. "
*
#% &!
% &
" .# ) #
!
!)
!)$ "
! ' " ,
- , #
+ 0 . #
1
! '
* # !
" &# ,
& !*
# '
! .
#
!
!) + ! $, + .
"
!)$
,
"
"
'
# !
# & " 0 +
*# ". 7 # '
"
*
, )
- +
, "
' &
* * "
!* , " # !(
,
1
,
!
, ' #
!
!)
!)$ &!
*"!*% *
# "
' &
* * ! ' - # & ! #*
!!
.
+
"
* #
!
!) & " 0 &
!)$
# "!
. 3.
* +! ' - # & DO,
"
!*+ # &!
* *
β
(!%#
- # &! ϕ = π – β,
(!%# !%
+ #* ! ' ,
*
'
$
(!
#
!)
' + ! ' - DN - .
- # & .
#
!)$ " # !* * ,
*
& " " &
(! & # *
"
* * # &!
α, " - "
! #*
!!
+
".
( ! "! " %
"
& !
,! '
&! "
#
α, "
(!%#
+ "
&
! $ !
,
" ' " %/ + " ,)
'
! (
(!
[1, 3]. ,
.3
. " # ), '
& ! DOC
.#
"
#
!
!)
!)$
"
ξ = α – 2ϕ,
#
# !) - & ! COS #
!
!) &
!)$
"!*
ϕ1 = ξ + ϕ = α – ϕ.
"
# !
. .
,
" %/ - & ! & !
# "
,
. ( )! &
+ &! " + ,
(3)
":
-
α = 2ϕ + ξ.
(4)
*
!* (! . -0 & (
!) !) &
!)$ " ! '
α + *
! ' *
! ' %,
"!** 8,5÷9°.
, '
'
" #
&!
* *,
( , %/ &
, "
& !
7 ,
/ &
# !)
!! '
[1].
+ .#
! $ ( !)0 &
,
. ( ) , !)
! # " !) + 0 & " "
' &
* *
+
!! +.
& ,
#
'
& " !
,
( , * &! " & ! "
' % * &! , '
&! & !
7 , .
" *
! ' , + . ,'
!! ", ( , %/ #
!
!)
!)$ &! , #
'
'
#!* (! " " + .
* ) / #
'
*"!
,
(!%#
"
# -, " ! '
&!
, !
* * ! ' & " .
, "
*
, $ *
(! , . . # . *
( /
+
! $
"
(!
! (
# .
*
" ! ( + (! +.
* '
" ,
%
&! "
*
40–5°
! $ , ( " % " *
" # &
.
"
"
! .
) # .# " - # &
%
%
, ( /
% $
( ! $ ).
'
, " % , '
*
, $
!)
&
# "!* )
( &
# & 2-&
*# , ( , "
' +'
$ + n = 1,81÷1,82.
&
&!
&! ) #
* "
,
!
5. #
'
* * "
'
, !*
! !
*, " !
3 ,
, ! ,' "
# ! + &! " + ,
"
# - &!
( #
. ! &
*
∼ 1,5 # ∼ 3,8o)
#
* *
.
)
#" *
+ .#
.
! '
( ' -. # -" #
, !
! !
* n ≈ 1,33 – 1
(
&
* * ! ' & "
!*
'
#
" & #
∼ 8 # ∼ 16
. (!
"
# ! 0
! " *
,' (
( ' )
'
*"!
&!
+ ! # +
(! +. #
#
" - . (!
&! "
*"!* * "
! ' , &#
, !)
! !
*
" %/ +
'
+'
$
"!* 1,81÷1,82
+ ,
" + #* ∼ 20
. ,
"
*
, " -&
'
- #!* &! + #*/ & * '! ' -,
*
&
-, # ! " " #
, '
#
*
# !)
*
# &
" &
*# ,
"
+'
$ + # (
,
," * # .# " * # & ( ,
*
!*+ ( ' - " # .
*
! '
(
&
* *,
! '
'
*
# !) # & #!* n = 1,8 " " + # !*+ " ," #
"
" - "
# &!
.
# & ,
[4, 5, 18, 19] ( ! 1
!)
(
. , '
!
,
, ' !)
" 0 30
# (
"
, !
! !
* *"!*% *
)0 '
(
!)# # . / + (! ",
+
'
" &#
(!%#
* &!
*"
& ! ' ! .
( , , ! ' &!
+ ! #
(!
, ' ,' 1
(!
# . . #
!) %
$ %,
*/ % ,
!) A-" # . &! " - ,
0 !)$ ,
&
'
$" " +
'
$
#
,! '
,
!) % #
$
%
! ' " (!
!) -" #
( + ,
+.
$, " 0
#
!
!)
!)$ " ! &!
," *
" & ,
, " %
" "
(!
! #* +
!! "
$
'
+
[20].
,'
" + -&
$ (! +, # . / + ! #* % , , &!
*
#+ #*/ + ! " *+ (!%#
*
'
" &# ,
# " .#
. " " #
" - "
-" # ,
#
$
" "
! #* - , -.
! #
# !.
, ' ),
'
, "
- « " , . # -» ! -,
" %/ " +
) ! #* + '
$ [13, 14],
'
, -" #
! # ** ! .
. ' )%
, " & « ' »
" !)# "
+ #
– ! # [21].
!
) -" # ,
'
*
!
$–
$ ,
, !*
! !
*" # ". !
"
[9], (! ,
2,1 & · –3.
, '
# "! "
!)
&!
*
( ! #
"
,
- [21] ! )%
& !)# ,
" "0 ! 2,3 & · –3
∼ 100 K [6, 10].
+ # " ! .
#
,
"
, !%' ), '
-" #
, '
# "!*
( ! " " # &
&
#
[8, 9].
(
[21]
#
* ( ! # !) ! , " - " -" #
' )
, '
+
" *#
!
+
* - 62 .
" - " -" # ,
"!
+
*/
"
,
# . * " (! $ .
0
%,
( !
( # !)
# " .#
$ $
(! ' - A-" #
"
,'
#
"!*
"
!) - !%'
%"
/
0
+
(!
,
+ ! # + (! ",
+
!) *
-' " )
0
&
, " &
" !
( , + (! "; " +"
*
$
$ *
(! ' +
!! "
"
%
$
$ - (.
+ !)# ( , %/ + *# ;
+ .#
, "
&
+! .#
& # .#* !
0
+
,
+
# " # &
#
(4*
*"!
*, "*,
+ ! #
(!
[4,18,19]. 1
*# "+ #
*"!
&!
.
$ %
6
$
%
-
5
, *&'
*
# !
)η
!
'
'
* "*,)
# !) *
*
!
* # !) *
!
!! , $ "! #I
'
*
' -
! "
(135 ± 1) K
η = 1012 6· ·
∼ 150 K
η = 108÷109 6· ·
<10–2 6· ·
–2
2,3 &·#
–3
2,1 &·#
–3
T > 218 K
" #
*
,
≈ 100 K
8 #
*
–2
1
–2
1
1, 2
3
4
6
0,55·10
.· &–1 ± 20%
2,29·106 .· &–1
± 5%
, ' *,
( $"
*
T = 243 K
5
T = 243 K
6
1
679
,
!
!)
!
1,795÷1,805
1,81÷1,82
*
8 !
7
- "
- "
'
*: 1 –
[8]; 2 – 1
!*$ * 1
!) - , "
η(T)
, [8]; 3 –
[6];
4 –
'
,
, !*
! !
*; 5 –
[5]; 6 – ,
)
.#
! * !)# I A-" # ; 7 – #
*
)*.
&
!%
, ,'
'
*"!
&!
"!*
( # & ,
"
% "
'
$
*
! '
"
'
∼ 20
, (! # %/
, !
! !
*
1,81÷1,82 " . !
" .
! '
# " .#
/ " "
* "
# + !)# # . / + (! +
!) . # - " # "
(
, "
*
–
- " # , ! A-" # .
3
( .#
, '
$ $ * A-" # # !. " !
) #
%/ ,"
" / " %/ + ,
*+
+ ! # + (! +
, ! . "
# !) -0 &
! # "
* " #
*.
! '
, !)
, " % , '
# !)
, '
& *"!
*
&!
# "!*% ( !)0 ,
*"!
,
. &
'
+
'
+
(
' " %
!) % #
$
%
$ % #
+
, + " + ! # + (! +. &! "
,
1!
" &!
&
! . )
#
,
"
!) A-" # ,
#
!
!)!)$
&
( , ' )
"
+
! #* +
!! ".
6
!%' , '
'
'
$ ,
'
(
.
"
+ (! +
!
" (! '" # & + !
,
.
&
* ) , A" # .
)
(!
1.
+
#
. ., !
".#., !
$
" - "
!! '
+ (! ".
.:
1984. 198 .
2. %
&., "
. 1 , ! − ! ,#
1969. 428 .
3.
. "
$" "
# . 3.: 6
.%.
#
'
,# ,
. .: 5
*,
4. # '
.#.
! # "
*
,
. # - , " !)# # . / + (! + // 3
!. & # !. 1993. 1. C. 55−
68.
5. # '
.#., (
.).
!)
! # " * , " -#
&
* (! " !
+
$ !) +
+ // 3
!.
& # !. 1992.
8. C. 52−65.
6. *
.!., +
.!.
*
!! , $ *
+! .#
+. #
-. 3.: 6
, 1984. 231 .
7. &,
%.,
.
*
"
!
'
$
. 3.:
,#-"
.!
, 1961. 536 .
8. ( +.*. " #
"
. .: #
,# ,
1983. 242 .
9. . '
., +
.
" - " " # . .: #,# , 1975. 280 .
10. Angell C.A. Amorphous water // Annu. Rev. Phys. Chem. 2004.
V. 55. P. 559–583.
11. Cober S.G., Strapp J.W., Isaac G.A. A case study of freezing drizzle formed through a collision coalescence process // J. Appl. Meteorol. 1996. V. 35. P. 2250–2260.
12. Delsemme A.H., Wenger A. Superdense water ice // Sci. 1970.
V. 167. N 3914. P. 44–45.
13. Fletcher N.H. The chemical physics of ice. Cambridge: Cambr.
Univ., 1970. 271 p.
14. Jellinek H.H.G. Liquid-like (transition) layer on ice // J. Colloid
and Interface Sci. 1967. V. 25. N 2. P. 192−197.
15. Laven P. Simulation of rainbows, coronas, and glories by use of
Mie theory // Appl. Opt. 2003. V. 42 N 3. P. 436–444.
16. Laven P. How are the glories formed? // Appl. Opt. 2005. V. 44.
N 27. P. 5675–5683.
17. Mazin I.P.,Nevzorov A.N.,Shugaev V.F.,Korolev A.V. Phase structure of stratiform clouds // 11th Int. Conf. on Clouds and Precipitation. Montreal, Canada, 1992. P. 332−335.
18. Nevzorov A.N. Permanence, properties and nature of liquid phase
in ice-containing clouds // 11th Int. Conf. on Clouds and Precipitation. Montreal, Canada, 1992. P. 270−273.
19. Nevzorov A.N. Cloud phase composition and phase evolution as
deduced
from
experimental
evidence
and
physico-chemical concepts // 13th Int. Conf. on Clouds and Precipitation. Reno. Nevada, USA, 2000. P. 728−731.
20. Nevzorov A.N. Glory phenomenon informs of presence and phase
state
of
liquid
water
in
cold
clouds
//
Atmos. Res. 2006. V. 82. N 1–2. P. 367–378.
21. Nevzorov A.N. Some properties of metastable states of water //
Phys. of Wave Phenomena. 2006. N 1. C. 45–57.
22. Pruppacher H.R., Klett J.D. Microphysics of clouds and precipitation. Dordrecht: Reidel, 1978. 714 p.
, 1969. 344 .
A.N. Nevzorov. Glory phenomenon and a nature of liquid-drop fraction in cold clouds.
Although the optical phenomenon of glory on cloud tops with negative temperatures is now widely known to be observable
from aircraft, the information thereby obtained on cloud microphysics remains not called for. The analysis made in the present paper
is based on a comparison between the features of the glory phenomenon, geometric theory of bow formation, and Mie scattering theory. The convincing evidence has been provided that this sort of glory forms as a first-order bow from spherical particles with a refractive index of 1.81–1.82 and diameter over 20 um. Thus obtained are solutions of two interrelated problems: (i) the cold-cloud
glory is proved to be a bow formed from spheres with those unusual optical properties, (ii) once more corroboration is gained of earlier discovered existence in cold clouds of droplets of liquid water in specific phase state referred to amorphous water, or A-water.
Physico-chemical and genetic peculiarities of A-water are briefly summarized here. The results obtained show that a detailed study
and monitoring of the glory phenomenon are of great interest since the occurrences of the phenomenon itself as well as its geometrical and photo-chromatic characteristics provide unique remote information about the disperse phases of cold clouds. The visible size
of the glory can serve as an indicator of the maximum size of A-water droplets, and its extra outer rings must reveal the presence of
some forms of ice crystals.
680
. .
'
. 1. !
-$
*"
&
!)$ &!
!
"
(!
"
.9
! .
. .
%
! " .
"
!
Скачать