Пташинской О

реклама
Пташинской О. И., 511 группа
План-конспект урока физики в 9-ом классе
Тема урока: Движение тела, брошенного под углом к горизонту.
Тип урока: урок изучения нового материала.
Вид урока: смешанный урок.
Цели урока.
дидактическая: познакомить учащихся с особенностями движение тела,
брошенного под углом к горизонту, а также с математическим описанием этого
движения;
развивающая: развивать образное мышление, качество речи, показать связь
физических законов и явлений с математическими выражениями.
ТСО: пластиковая бутылка с окрашенной водой, штатив.
Демонстрации: опыт, показывающий зависимость характера полета струи воды
от угла наклона и скорости вытекания воды.
Ведущая идея урока: Движение тела под углом к горизонту есть векторная
сумма вертикальной и горизонтальной составляющих скоростей.
Структура урока:
1. Организационный этап  2 мин.
2. Проверка домашнего задания  10 мин.
3. Изучение нового материала  20 мин.
4. Практические упражнения  10 мин.
5. Домашнее задание  3 мин.
Содержание урока:
Организационный этап.
Захожу в класс, приветствую ребят, проверяю готовность доски, наличие мела,
отмечаю отсутствующих, выясняю причины отсутствия, спрашиваю, какие проблемы
возникли при подготовке домашнего задания.
Проверка домашнего задания.
Вопросы по теории.
1. Как направлена скорость движения в любой точке траектории?
Ответ: По касательной к параболе в этой точке.
2. Чем является траектория движения тела, брошенного горизонтально?
Ответ: Параболой.
3. Из каких составляющих состоит движение по параболе?
Ответ: Из равномерного движения в горизонтальном направлении и
равноускоренного в вертикальном.
4. Записать законы изменения координат X и Y в зависимости от времени.
Ответ: x=x0+v0t,
y=y0+gt2/2.
Изучение нового материала.
Движение тела, брошенного под углом к горизонту, часто называют
баллистическим движением. Баллистика (греч. ballo ― бросаю) ― наука, которая
изучает законы движения артиллеристских снарядов, пуль, реактивных самолетов,
ракет и т.д. Первым, кто правильно описал баллистическое движение, был Галилей.
Для простоты будем рассматривать движение тела без учета силы
сопротивления движения, хотя далеко не всегда это можно сделать. Часто не
учитывают эту силу, если тело имеет большую массу.
Проведем такой опыт. Пластиковую бутылку с окрашенной водой закрепим на
штативе, отклонив от вертикали. Открыв
отверстие в бутылке, будем наблюдать за
траекторией движения струи воды. Из опыта
видно, что траекторией будет парабола.
Изменяя угол наклона и скорость вытекания
воды в струе (нажатием на бутылку),
заметим, что меняются максимальная
скорость подъема и дальность полета.
Определим характеристики движения
тела. Пусть начальная скорость v0, а угол,
который она составляет с горизонтом, ― α.
Это движение равноускоренное с ускорением g, которое происходит только под
действием силы тяжести. Значит, мгновенная скорость v изменяется по закону
равноускоренного движения:
v = v0+gt.
(1)
В проекции на ось OX gx = 0,
vx = v0x, или vx = v0 cos α.
(2)
Горизонтальная составляющая скорости vx от времени не зависит, т.е. по
горизонтали движение равномерное. Это является результатом того, что в
горизонтальном направлении на тело не действует сила. В проекции на ось OY
уравнение (1) получим:
vy = v0y+gyt.
Так как v0y = v0 sin α, gy = -g, тогда
vy = v0 sin α – gt,
(3)
т.е. в вертикальном направлении тело движется равноускоренно с ускорением gy<0.
Формулы (1) ― (3) позволяют записать законы движения тела в вертикальном и
горизонтальном направлениях. Так как тело начинает движение с начала координат,
то x0 = 0, y0 = 0. Тогда
x = v0 cos α t,
(4)
2
y = v0 sin α t – gt /2.
(5)
Максимальное значение x = OC есть дальность полета L тела. Значит,
L = v0 cos α t.
(6)
Из формулы (6) видно, что дальность полета при данной начальной скорости
зависит от угла α, под которым бросают тело. Найдем α, при которой L максимальна.
При этом y = 0. Тогда (5) имеет вид
0 = v0 sin α t – gt2/2, или
t = 2v0 sin α /g.
(7)
Подставим (7) в (6). Получим:
L = 2v02 cos α sin α / g.
Известно, что 2 cos α sin α = sin 2α, тогда
L = v02 sin 2α/g.
(8)
Исследуем (8). v0 и g ― постоянные, L зависит только от sin 2α. Максимальное
значение sin 2α = 1, при 2α = 90º, а α = 45º.
Таким образом, дальность полета L тела, брошенного под углом α к горизонту,
будет максимальной, если скорость бросания направлена под углом 45º к горизонту.
Итак, сделаем выводы:
1. Движение тела, брошенного под углом к горизонту, состоит из двух
независимых движений: равномерного со скоростью vx = v0 cos α по горизонтали
и равноускоренного со скоростью vy = v0 sin α – gt по вертикали.
2. Время движения по горизонтали в 2 раза большее за время подъема тела
на максимальную высоту.
3. В самой высокой точке траектории движение тела (вершина параболы)
вертикальная составляющая скорости равна нулю.
4. Максимальная дальность полета, без учета сопротивления движения, при
данной начальной скорости достигается при угле бросания α = 45º.
Практические упражнения.
Упр.12. на стр.70.
Домашнее задание.
§ 18.
Оформление доски.
1.11.2004. Движение тела, брошенного под углом к
горизонту.
Д/З. § 18.
vx = v0 cos α
vy = v0 sin α – gt
Записи в рабочей тетради ученика.
1. Движение тела, брошенного под углом к горизонту, состоит из двух
независимых движений: равномерного со скоростью vx = v0 cos α по горизонтали и
равноускоренного со скоростью vy = v0 sin α – gt по вертикали.
2. Время движения по горизонтали в 2 раза большее за время подъема тела на
максимальную высоту.
3. В самой высокой точке траектории движение тела (вершина параболы)
вертикальная составляющая скорости равна нулю.
4. Максимальная дальность полета, без учета сопротивления движения, при
данной начальной скорости достигается при угле бросания α = 45º.
v = v0+gt.
OX: vx = v0x, или vx = v0 cos α.
OY: vy = v0y+gyt.
Так как v0y = v0 sin α, gy = -g, тогда
vy = v0 sin α – gt,
x0 = 0, y0 = 0.
x = v0 cos α t,
y = v0 sin α t – gt2/2.
Максимальное значение x = OC есть дальность полета L тела. Значит,
L = v0 cos α t.
Найдем α, при которой L максимальна. При этом y = 0. Тогда
0 = v0 sin α t – gt2/2, или
t = 2v0 sin α /g.
L = 2v02 cos α sin α / g.
Известно, что 2 cos α sin α = sin 2α, тогда
L = v02 sin 2α/g.
Скачать