ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение профессионального образования «Мурманский государственный педагогический университет» (МГПУ) УЧЕБНО−МЕТОДИЧЕСКИЙ КОМПЛЕКС ДИСЦИПЛИНЫ СД.3. Теория функций комплексного переменного Основная образовательная программа подготовки специалиста по специальности 050201.00 − «математика – с дополнительной специальностью» Утверждено на заседании кафедры математического анализа и методики преподавания математики физико-математического факультета (протокол № 1 от 25 сентября 2008 г.) Зав. кафедрой _______________________________ Раздел 1. Программа учебной дисциплины. Структура программы учебной дисциплины 1.1 Автор программы: Локоть Вадим Владимирович 1.2 Рецензенты: Зотиков Сергей Васильевич, Мартынов Олег Михайлович 1.3 Пояснительная записка Цель курса − вооружить будущего учителя строгими обоснованиями изученного им курса математического анализа и познакомить его с такими важными для преподавания и изучения математики понятиями, какими являются комплексные числа, функции комплексного переменного, производная и интеграл функции комплексного переменного. Завершается курс знакомством с приложениями теории функций комплексного переменного. Студенты должны знать свойства комплексных чисел, определения и свойства основных z элементарных функций (e ,sin z ,cos z , tgz,ctgz,Arcsin,Arccosz,Arctgz,Arcctgz, Lnz, z ) , производную и интеграл функции комплексного переменного, числовые и степенные ряды, классификацию особых точек. Студенты должны уметь производить действия над комплексными числами, находить значения элементарных функций комплексного переменного, вычислять интегралы функций комплексного переменного, применять вычеты к нахождению несобственных интегралов. Учебная программа составлена в полном соответствии с требованиями государственного стандарта высшего образования от 11.02.2005г. 1.4 Извлечение из ГОС ВПО ДПП. Ф.03 Теория функций комплексного переменного − 90 Функции комплексного переменного. Предел и непрерывность функции комплексного переменного. Дифференцирование функции комплексного переменного. Понятие аналитической функции. Интегрирование функции комплексного переменного. Теорема Коши. Ряды Тейлора и Лорана. Вычеты и их приложения. 1.5 Объём дисциплины и виды учебной работы № п/ п Шифр и наименование специальности Курс 1. 050201.00 − «математика – с дополнительной специальностью» Итого 3 Семестр 6 Виды учебной работы в часах Трудоёмкость Всего аудиторных Лекции Практические Сам. раб. Вид итогового контроля 90 56 30 26 34 2 к/р экзамен 90 56 30 26 34 1.6 Содержание дисциплины 1.6.1 Распределение дисциплины и виды занятий (в часах). Примерное распределение учебного времени: № п/ п Наименование раздела, темы I 1. 1) 2) 3) 4) 5) 6) II Функции комплексного переменного Комплексные числа и действия над ними Последовательности комплексных чисел Числовые ряды. Абсолютная сходимость Элементарные функции комплексного переменного e z ,sin z, cos z. Определение. Область сходимости Теоремы сложения, формулы Эйлера, периодичность Логарифмическая функция Степень с произвольным комплексным показателем Обратные тригонометрические функции Гиперболические функции, их связь с тригонометрическими Предел и непрерывность функции комплексного переменного Производная функции комплексного переменного Условия Коши-Римана (Даламбера-Эйлера) Гармонические функции 7) 8) 9) 10) 11) 12) 13) 14) 2. 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) Интегрирование функции комплексного переменного. Теорема Коши. РядыТейлора и Лорана Определение интеграла. Формулы для вычисления Теорема Коши для односвязной области и сложного контура Интегральная формула Коши Интегрирование функциональных рядов Разложение аналитической функции в степенной ряд Теорема Лиувилля. Основная теорема алгебры Теорема Коши-Адамара. Теорема Абеля Почленное дифференцирование степенного ряда Ряд Тейлора. Ряд Лорана Классификация особых точек Определение вычета. Основная теорема о вычетах Применение вычетов Всего ауди т. III 28 Количество часов ЛекПракСамоции тичестояские тельная работа IV V VI 14 14 24 1 2 1 1 2 1 1 1 1 1 1 1 1 28 1 1 1 1 2 2 16 12 1 1 2 1.6.2 Содержание разделов дисциплины 1. Функции комплексного переменного Комплексные числа и действия над ними. 2 2 1 1 1 1 1 2 2 2 2 1 1 1 1 1 1 2 2 2 28 Последовательности комплексных чисел. Числовые ряды. Абсолютная сходимость. Элементарные функции комплексного переменного. e z ,sin z , cos z. Определение. Область сходимости. Теоремы сложения, формулы Эйлера, периодичность. Логарифмическая функция. Степень с произвольным комплексным показателем. Обратные тригонометрические функции. Гиперболические функции, их связь с тригонометрическими. Предел и непрерывность функции комплексного переменного. Производная функции комплексного переменного. Условия Коши-Римана (Даламбера-Эйлера). Гармонические функции. 2. Интегрирование функции комплексного переменного. Теорема Коши. РядыТейлора и Лорана Определение интеграла. Формулы для вычисления. Теорема Коши для односвязной области и сложного контура. Интегральная формула Коши. Интегрирование функциональных рядов. Разложение аналитической функции в степенной ряд. Теорема Лиувилля. Основная теорема алгебры. Теорема Коши-Адамара. Теорема Абеля. Почленное дифференцирование степенного ряда. Ряд Тейлора. Ряд Лорана. Классификация особых точек. Определение вычета. Основная теорема о вычетах. Применение вычетов. 1.6.3 Темы для самостоятельного изучения № п/ п Наименование раздела дисциплины. Тема. 1. Функции комплексного переменного 2. Форма самостоятельной работы Домашние задания Коллоквиум Контрольная работа Интегрирование функции комплекс- Домашние задания Коллоквиум ного переменного. Теорема Коши. Ря- Контрольная работа дыТейлора и Лорана Количество часов 24 (8) (10) (6) 28 (8) (12) (8) Форма контроля выполнения самостоятельной работы Проверка домашних заданий Индивидуальное собеседование Проверка и анализ результатов контрольной работы Проверка домашних заданий Индивидуальное собеседование Проверка и анализ результатов контрольной работы Экзамен 1.7 Методические рекомендации по организации изучения дисциплины. Планы проведения практических занятий Практическое занятие № 1 Тема: Комплексные числа и действия над ними. Вопросы для обсуждения: 1. Модуль и аргумент комплексного числа. 2. Тригонометрическая форма записи комплексного числа. 3. Сложение, умножение и деление комплексных чисел. Возведение в степень. Формула Муавра 4. Корень n - ой степени из комплексного числа. 5. Множество точек в комплексной области, удовлетворяющих соответствующему равенству. 6. Множество точек в комплексной области, удовлетворяющих соответствующему неравенству. Литература: [1], стр. 4 – 13, [2] стр. 8 – 17. Задания для самостоятельной работы в аудитории: [3], № 2664(1, 3, 5, 7, 9, 11, 13), № 2665(1, 3, 5), № 2673(1), № 2675, № 2677, № 2679, № 2681, № 2683, № 2685, № 2687, № 2689, № 2691, № 2693, № 2695. [1], № 78(а, в, д), № 79(а, в). Домашнее задание: Теоретический материал: [1], стр. 13 – 19. Последовательности комплексных чисел. Числовые ряды. Практическая часть: [3], № 2664(2, 4, 6, 8, 10, 12, 14), № 2665(2, 4, 6), № 2673(2), № 2676, № 2678, № 2680, № 2682, № 2684, № 2686, № 2688, № 2690, № 2692, № 2694, № 2696. [1], № 78(б, г), № 79(б). Практическое занятие № 2 Тема: Числовые последовательности и ряды. Вопросы для обсуждения: 1. Определение предела числовой последовательности. 2. Бесконечный предел. 3. Необходимые и достаточные условия существования предела последовательности комплексных чисел. 4. Необходимые и достаточные условия сходимости рядов с комплексными членами. 5. Признаки сходимости числовых рядов. Литература: [1], стр. 13 – 19. Задания для самостоятельной работы в аудитории: [3], № 2697, № 2699, № 2703, № 2705, № 2706, № 2707, № 2709, [1] № 17(а, в). Домашнее задание: Теоретический материал: [1], стр. 80-81, 85-87, 92-105, [2] стр. 85-99. Элементарные функции комплексного переменного. Практическая часть: [3], № 2698, № 2700, № 2702, № 2704, № 2708, № 2710, [1], № 17(б, г). Практическое занятие № 3 Тема: Элементарные функции комплексного переменного. Вопросы для обсуждения: z 1. Определение функций e ,sin z,cos z . 2. Показательная форма комплексного числа. 3. Формулы Эйлера. 4. Логарифмическая функция. 5. Степень с произвольным комплексным показателем. Литература: [1], стр. 80-81, 85-87, 92-105, [2] стр. 85-99. Элементарные функции комплексного переменного. Задания для самостоятельной работы в аудитории: [3], № 2747(1, 3, 5, 7), № 2748(1, 3, 5, 7, 9), № 2750, [1], № 80(а, в), № 81(а, в, д, ж), № 82(а, в), [2], № 4(б, г), № 7(б, г). Домашнее задание: Теоретический материал: [1], стр. 80-81, 85-87, 92-105, [2] стр. 85-99. Практическая часть: [3], № 2747(2, 4, 6, 8), № 2748(2, 4, 6, 8, 10), № 2749, [1], № 80(б, г), № 81(б, г, е), № 82(б), [2], № 4(а, в), № 7(а, в). Практическое занятие № 4 Тема: Элементарные функции комплексного переменного. Вопросы для обсуждения: 1. Обратные тригонометрические функции. 2. Гиперболические функции. 3. Связь гиперболических функций с тригонометрическими функциями. 4. Связь обратных тригонометрических функций с логарифмической функцией. Литература: [1], стр. 80-81, 85-87, 92-105, [2] стр. 85-99. Задания для самостоятельной работы в аудитории: [3], № 2745(1, 3, 5, 7), № 2746(1, 3), № 2750, № 2751, № 2752(1, 3), № 2753(1, 3), № 2754(1, 3), [1], № 87(а, в, д, ж), № 90(а, в, д, ж). Домашнее задание: Теоретический материал: [1], стр. 25-40, [2], стр. 25-30, 38-42. Практическая часть: [3], № 2745(2, 4, 6, 8), № 2746(2, 4), № 2749, № 2752(2), № 2753(2), № 2754(2), № 2755, [1], № 87(б, г, е), № 90(б, г, е). Практическое занятие № 5 Тема: Предел и непрерывность функции комплексного переменного. Производная функции комплексного переменного. Вопросы для обсуждения: 1. Определение предела функции в точке, бесконечного предела, предела на бесконечности. 2. Свойства функций, имеющих предел. Необходимые и достаточные условия существования предела. 3. Определение непрерывности функции в точке. 4. Свойства непрерывных функций. Условия непрерывности функции комплексного переменного. 5. Существование производной и дифференцируемость. 6. Условия Коши-Римана (Даламбера-Эйлера). Понятие аналитической функции. Литература: [1], стр. 25-40, [2], стр. 25-30, 38-42. Задания для самостоятельной работы в аудитории: [3], № 2713, № 2715, № 2717, № 2719, № 2721, № 2723(а, в), № 2757, № 2759, № 2761, [1], № 34(а, в, д), № 35, № 37, № 39(а, в). Домашнее задание: Теоретический материал: [1], стр. 108-114, 133-137, [2], стр. 101-106, 116-118. Практическая часть: [3], № 2714, № 2716, № 2718, № 2720, № 2722, № 2723(б), № 2756, № 2758, № 2760, [1], № 34(б, г), № 36, № 38, № 39(б). Практическое занятие № 6 Тема: Интеграл функции комплексного переменного. Вопросы для обсуждения: 1. Определение интеграла. 2. Свойства интеграла. 3. Формулы для вычисления интеграла. Литература: [1], стр. 108-114, 133-137, [2], стр. 101-106, 116-118. Задания для самостоятельной работы в аудитории: [3], № 2770(1, 3), № 2771(1, 3), № 2772(1, 3), № 2773(1), [1], № 105(а, в, д), № 106(а, в), № 107(а, в), № 108(а, в), № 109(а, в). Домашнее задание: Теоретический материал: [1], стр. 138-146, [2], стр. 74-81. Практическая часть: [3], № 2770(2), № 2771(2), № 2772(2), № 2773(2), [1], № 105(б, г, е), № 106(б), № 107(б, г), № 108(б), № 109(б, г). Практическое занятие № 7 Тема: Разложение аналитической функции в степенной ряд. Вопросы для обсуждения: 1. Интегральная формула Коши. 2. Разложение аналитической функции в степенной ряд. 3. Теорема Лиувилля. 4. Основная теорема алгебры. Литература: [1], стр. 138-146, [2], стр. 74-81. Задания для самостоятельной работы в аудитории: [3] [1] Домашнее задание: Теоретический материал: [1], [2] Практическая часть: Практическое занятие № 8 Тема: Теорема Коши-Адамара. Теорема Абеля. Ряд Тейлора. Вопросы для обсуждения: 1. Теорема Коши-Адамара. Радиус сходимости степенного ряда. 2. Теорема Абеля. 3. Равномерная сходимость степенного ряда. 4. Ряд Тейлора. Литература: [1], [2] Задания для самостоятельной работы в аудитории: [3] [1] Домашнее задание: Теоретический материал: [1], [2] Практическая часть: Практическое занятие № 9 Тема: Ряд Лорана. Вопросы для обсуждения: 1. Классификация особых точек. 2. Характеризация устранимой особой точки. 3. Характеризация полюса. 4. Связь между нулём и полюсом. 5. Существенно особые точки. Теорема Сохоцкого. 6. Разложение функций в ряд Лорана. Литература: [1], [2] Задания для самостоятельной работы в аудитории: [3] [1] Домашнее задание: Теоретический материал: [1], [2] Практическая часть: Практическое занятие № 10 Тема: Основная теорема о вычетах. Вопросы для обсуждения: 1. Определение вычета. 2. Основная теорема о вычетах. 3. Вычисление вычета в случае полюса. 4. Вычет в бесконечно удалённой точке. Литература: [1], [2] Задания для самостоятельной работы в аудитории: [3] [1] Домашнее задание: Теоретический материал: [1], [2] Практическая часть: Практическое занятие № 11 Тема: Применение вычетов. Вопросы для обсуждения: 1. Применение вычетов для вычисления интегралов в комплексной области. 2. Применение вычетов для вычисления несобственных интегралов в действительной области. 3. Применение вычетов к суммированию рядов. 1.8 Учебно-методическое обеспечение дисциплины. 1.8.1 Рекомендуемая литература: Основная 1. Маркушевич А.И., Маркушевич Л.А. Введение в теорию аналитических функций. – М. Просвещение, 1977. 2. Балк М.Б., Виленкин Н.Я., Петров В.А. Математический анализ: Теория аналитических функций. – М.: Просвещение, 1985. 3. Давыдов Н.А., Коровкин П.П., Никольский В.Н. Сборник задач по математическому анализу. - М.: Просвещение, 1973. Дополнительная 4. Маркушевич А.И. Краткий курс теории аналитических функций. – М.: Физматгиз, 1961. 5. Привалов И.И. Введение в теорию функций комплексного переменного. – М.: Физматгиз, 1960. 6. Хапланов М.Г. Теория функций комплексного переменного. – М.: Просвещение, 1965. 7. Евграфов М.А. Аналитические функции. – М.: Наука, 1968. 8. Гончаров В.Л. Теория функций комплексного переменного. – М.: Учпедгиз, 1955. 9. Лунц Г.Л., Эльсгольц Л.Э. Функции комплексного переменного. – М.: Физматгиз, 1958. 10. Фукс Б.А., Шабат Б.В. Функции комплексного переменного и некоторые их приложения. - М.: Физматгиз, 1959. 11. Свешников А.Г., Тихонов А.Н. Теория функций комплексной переменной. – М.: Наука, 1967. 12. Балк М.Б., Петров В.А., Полухин А.А. Задачник практикум по теории аналитических функций. – М.: Просвещение, 1960. 1.9 Материально-техническое обеспечение дисциплины 1.10 Примерные зачетные тестовые задания. Контрольная работа № 1 (два варианта) 1. Данные числа z1 и z 2 представить в тригонометрической и показательной формах и 2 z выполнить указанные действия: z1 3 i; z2 2 2i; a) z1 z2 ; b) 1 . z2 2. Найти все значения a ) 3 27 27i ; b) 4 16i и изобразить их на комплексной плоскости. 1 2 2 3. Найти образ a ) x y 2 x 1 0; b) y x 1 при отображении w . z 1 1 4. Вычислить: a) Arccos ; b) Arctg(1). 2 5. Проверить выполнение условий Коши-Римана (Даламбера-Эйлера) и найти f ( z ) : a) z 6 5 z 2 ; b) sin 2 z cos3 z. 6. Проверить, что функция ( x; y ) гармоническая, и построить соответствующую ей аналитическую функцию: a ) ( x; y ) x 6 15 x 4 y 2 15 x 2 y 4 y 6 3x 2; b) ( x; y ) e 2 y cos 2 x. Контрольная работа № 2 (два варианта) 1. Определить радиус сходимости и круг сходимости степенного ряда: 2 n0 a) n n 3n z 2 i ; b) n0 1 1 z 3 . n n n 2. Вычислить интеграл: z 3dz по отрезку прямой, соединяющей точки z 1 i и a) z 2 6i; C 2 2 z z dz по дуге параболы b) y x 2 от точки z 1 i до точки z 2 4i. C 3. Разложить функцию f в ряд Лорана и указать область, в которой это разложение имеет место: 2z 3 в окрестности точек z i, z 2, z ; ( z i)( z 2) z 1 в окрестности точек z 2i, z 1, z . b) f ( z ) ( z 2i)( z 1) a) f ( z ) 4. Найти изолированные особые точки аналитической функции и выяснить их характер: a) 1 tgz z 1 1 z , ; b ) , . z2 9 z z3 z ez 5. Определить нули функции и указать их кратность: e 1 z a) z 2 ; b) z ( z 3)sin z 2 . 6. Вычислить интегралы: a) dz 3 z z 2 4 |z i| dz ( z 3)( z 1)2 . |z 1|1 ; b) 2 1.11 Примерный перечень вопросов к экзамену 1. Алгебраическая форма комплексного числа (к.ч.). 2. Изображение к.ч. на плоскости. Тригонометрическая форма к.ч. 3. Свойства модуля и аргумента к.ч. 4. Формула Муавра. Извлечение корня n ой степени из к.ч. 5. Последовательности к.ч. 6. Числовые ряды. Геометрическая прогрессия. 7. Абсолютно и условно сходящиеся ряды. 8. Действия над рядами. 9. Функции комплексной переменной. Геометрический смысл. z 10. e , sin z , cos z (определение, область сходимости). 11. Формулы Эйлера. 12. Теорема сложения для показательной функции. 13. Теоремы сложения для тригонометрических функций. z 14. Действительные и мнимые части e , sin z , cos z . 15. Периодичность показательной и тригонометрических функций. 16. Особенности поведения cos z в комплексной плоскости. z 17. Особенности поведения e в комплексной плоскости. Поверхность Римана. 18. Логарифмическая функция. 19. Парадокс Бернулли. Логарифмы положительных и отрицательных чисел. 20. Степень с произвольным комплексным показателем. 21. Arcsin z , Arcctgz. 22. Arccos z , Arctgz. 23. Гиперболические функции, их связь с тригонометрическими. 24. Предел функции комплексного переменного. 25. Непрерывность функции комплексного переменного. 26. Производная функции комплексного переменного, её связь с дифференцируемостью. 27. Условия Коши – Римана (Даламбера – Эйлера). Необходимость. 28. Условия Коши – Римана (Даламбера – Эйлера). Достаточность. 29. Понятие аналитической функции. 30. Гармонические функции. 31. Конформные отображения. Лемма. Геометрический смысл модуля и аргумента производной. 32. Отображение с помощью линейной функции. Отображение с помощью функции 33. Отображение с помощью дробно-линейной функции. 34. Определение интеграла. Формулы для вычисления. 35. Свойства интеграла. 36. Теорема Коши для односвязной области. 37. Теорема Коши для сложного контура. 38. Интегральная формула Коши. 39. Интегрирование функциональных рядов. 40. Разложение аналитической функции в степенной ряд. 41. Оценка коэффициентов разложения аналитической функции в степенной ряд. Теорема Лиувилля. 42. Основная теорема алгебры. 43. Первообразная функции комплексного переменного. Интеграл с переменным верхним пределом интегрирования. 44. Верхний предел последовательности, его свойства. 45. Теорема Коши-Адамара для действительной области. 46. Теорема Коши-Адамара для комплексной области. Теорема Абеля. Равномерная сходимость степенного ряда. 47. Теорема о почленном дифференцировании степенного ряда. 48. Ряд Тейлора. 49. Свойство единственности аналитических функций. 50. Ряд Лорана. 51. Единственность разложения аналитической функции в ряд Лорана. 52. Классификация особых точек. 53. Характеризация устранимой особой точки. 54. Характеризация полюса. 55. Связь между нулём и полюсом. 56. Теорема Сохоцкого. 57. Целые функции. 58. Мероморфные функции. R2 w . z 59. Определение вычета. Вычисление вычета в случае полюса. 60. Основная теорема о вычетах. 61. Применение вычетов к вычислению интегралов. 1.12 Комплект экзаменационных билетов Раздел 4. Словарь терминов (глоссарий) (страницы указаны в кн. Л.Д.Кудрявцева "Курс математического анализа" . Все тома есть в электронной библиотеке факультета ) Часть 1 Л.Д.Кудрявцев Курс математического анализа , т. 1 688 стр. М.: "Высшая школа", 1981 Абеля неравенство 582 - преобразование 582 - признак 585 - теорема о сходимости степенного ряда 621, 624 Архимеда свойство действительных чисел 43 Архимеда спираль 511 Асимптота 236, 243 Асимптотическое равенство 146, 397 - разложение 661—664 Асимптотический ряд 657 Астроида 286, 501, 511 Безу теорема 400 Базис стандартный пространства 317 Бернулли неравенство 74 Биективное отображение (биекция) 10 Больцано—Вейерштрасса теорема 63, 297 Бонне теорема 481 Валлиса формула 478 Вейерштрасса признак равномерной сходимости 603, 609 - теорема 121, 332 Вектор-функция 248, 320, 481, 653 Верхняя (нижняя) грань множества 38, 40, 42, 60, 90 Взаимно однозначное отображение или соответствие (инъекция) 9, 78, 83 Винтовая линия 272 Гамильтона символ (набла) 365 Гёльдера неравенство 465, 565 Гейне—Бореля лемма 314 Градиент функции 362, 364 Граница множества 306 График функции 8, 92, 239, 242, 321 Гульдина теорема 510 Даламбера признак 559, 578 Дарбу интегралы (верхний и нижний) 446 - суммы 443, 444, 445 Двоичная запись чисел 81 Дедекинда принцип 19 - признак 591 Декарта лист 247 Десятичная дробь 77, 78 Десятичное приближение 77 Диаметр множества 340 Дини теорема 615 Дирихле признак 534, 583, 609 - функция 92, 326, 443 Дифференциал функции 159, 161, 165, 177, 190, 251, 343, 345, 346, 350, 355, 362 Дифференциальный бином 426 Длина вектора 317 - кривой 268 Допустимое преобразование параметра 258 Дробь рациональная 95, 406, 410 Дуга кривой 263 Дю Буа Реймона признак 591 e (число) 62, 141, 159, 589 Евклида алгоритм 405 Евклидово пространство 317 Жордана теорема 309 Замена переменной 108, 121, 384, 474 Замыкание множества 302 Изоморфизм 30, 82, 677 Интеграл абсолютно сходящийся 530 - неопределенный 379 - несобственный 512 - определенный 440 Интегралы табличные 383 - эллиптические 437, 501 Интегральный признак к сходимости рядов 561 Интегрирование подстановкой 385 - по частям 387, 477 Интервал 34 - выпуклости вверх (вниз) 231 - сходимости ряда 634 Инъекция 9 Кантора теорема о несчетности действительных чисел 85 - - о равномерной непрерывности 336, 340 Кардиоида 287, 497 Касательная 164, 265, 361 Колебание функции на множестве 340, 341 Компакт 309, 315 Компактности свойство 63 Композиция функций 11, 94 Контур 256 Координаты полярные 286 Корень из числа 23, 130, 392 - многочлена 399, 400 Коши—Адамара формула 629 - критерий 66, 113, 530, 551, 600, 606 - признак 560, 578 - теорема о среднем 199 - форма остаточного члена формулы Тейлора 213, 638 - Шварца неравенство 289, 319 Кратность корня 400 Кривая 255, 260, 263, 307 - гладкая 266 - кусочно-гладкая 266 - ориентированная 262 - параметрически заданная 259, 262 - плоская 256, 273 - спрямляемая 268 Кривизна кривой 278 Кривизны радиус 279 - центр 283 Круг сходимости степенного ряда 622 Лагранжа теорема 196 - форма остаточного члена в формуле Тейлора 213, 638 - формула 197, 200 Лейбница признак 567 - формула 186 Лемниската 511 Линейность интеграла 454 Логарифмическая спираль 502 Ломаная 267 Лопиталя правило 201, 202, 204 Мажоранта 526 Маклорена формула 212, 216 Максимальный элемент числового множества 36 Минимальный элемент числового множества 37 Минковского неравенство 465, 565 Многочлен(полином) 95, 131, 214 Множество замкнутое 302 - линейно связное 308 - неограниченное 35—37 - несчетное 84 - ограниченное 35—37 - открытое 299 - пустое 6 - счетное 83 Множества равномощные 82 Модуль действительного числа 29 - комплексного числа 390 - непрерывности 337 Морфизм 8 Набла (символ Гамильтона) 365 Наибольшее значение функции 91 Наименьшее значение функции 91 Неопределенности 201, 204, 219, 220 Непрерывность действительных чисел 18, 30, 31, 44 Неравенство треугольника 317 Нормаль главная 281 - к кривой 281 Носитель кривой 261 - точки кривой 261 Ньютона—Лейбница формула 471, 472, 517 Область 308, 309 - выпуклая 309 - замкнутая 309 - определения функции 8, 91 Образ 10 Общий делитель 403 - - наибольший 403 Окрестность точки 34, 96, 291, 293, 301 - - проколотая 96, 323 Окружность соприкасающаяся 287 Остаток ряда 547, 593 Остроградского метод 419 Отображение 8 - взаимно однозначное (инъекция) 9 - отрезка 255 Отрезок 5, 34 Пара 8 - упорядоченная 8 Пеано аксиомы 12 - форма остаточного члена формулы Тейлора 212 Первообразная 378, 474, 482 Период 645 Площадь (мера) открытого множества 485 - поверхности вращения 505 Подпоследовательность 58, 295 Покрытие множества 311 Поле 27 Поле действительных чисел 29, 31 - комплексных чисел 395 - упорядоченное 29 Полнота действительных чисел 31 Полуинтервал 34 Полукубическая парабола 234, 285 Последовательность 12, 48, 295, 327, 396, 591, 665 - бесконечно большая 53, 553 - - малая 67—68, 397 - кратная 665 - монотонная 61 - ограниченная 59, 297, 592 - стремящаяся к бесконечности 298, 666 - сходящаяся 49, 54, 295, 592, 595 - фундаментальная 65 Последовательности одного порядка 397 - эквивалентные 397 Предел вектор-функции 249 - последовательности 49, 50, 51, 53, 54, 87, 88, 295, 303 - функции 97—106, 249, 322, 323, 441 Представление кривой 257, 258, 260, 263 Признак сравнения 524, 555 - сходимости ряда, интегральный 561, 562 Принцип вложенных отрезков 43 Произведение множеств 8 - последовательностей 68 - ряда на число 548 Производная 157, 184, 186 - бесконечная 157 - вектор-функции 251 - логарифмическая 181 - обратной функции 173, 188 - параметрически заданной функции 189 - по направлению 363 - сложной функции 175, 188, 367 - функции, заданной неявно 180 - частная 341 - - смешанная 370 Промежуток 34 Прообраз 9, 10 Пространство n-мерное 289, 317 Равномерная непрерывность 334 Радиус сходимости степенного ряда 622, 632, 634 Разбиение отрезка 267, 438 Расстояние 288, 289, 306 Расширенное множество действительных чисел 33 Римана интегральная сумма 439, 445 - теорема о перестановке членов ряда 580 Ролля теорема 194 Ряд 545 - гармонический 551, 587 - знакопеременный 567 - кратный 668, 672 - Лейбница 650 - степенной 621, 624 - суммируемый 590 - сходящийся 592, 666, 672 - - абсолютно 569, 592, 669 - - равномерно 602 - Тейлора 636, 637, 640, 655 - функциональный 591 Сечение 17 Символ всеобщности 13 - существования 13 Скалярное произведение векторов 317 Скорость вращения вектор-функции 276 Соответствие (отображение) 7, 8 Степень многочлена 399 - числа 23, 133 Стирлинга формула 651 Сужение функции 10 Сумма кривых 263 - (объединение) множеств 6 - последовательностей 67 Сумма ряда 546, 666 - - частичная 547, 592, 666 - - - прямоугольная 667 - - - сферическая 667 - - - треугольная 667 - рядов 549 Суперпозиция функций 11, 94 Сюръекция 9 Тейлора многочлен 212, 214 - ряд 636, 637, 640, 655 - формула 212, 216, 218, 637, 638, 646 Точка 20 - возрастания (убывания) функции 225 - кривой 256, 261 - - кратная 256, 261 - - неособая 266 - - особая 266 - максимума(минимума) функции 222, 227 - множества внутренняя 299 - - граничная 306 - - изолированная 302 - - предельная 302 - перегиба 234 - прикосновения множества 303 - разрыва функции 118, 119 - устранимого разрыва 118 - экстремума 222 - n-мерного пространства 288 Ферма теорема 192 Френе формула 281 Френеля интегралы 543 Функции гиперболические 182, 183 - одного порядка 145 - тригонометрические 139 Функция 7, 8, 11, 89 - аналитическая 630, 635 - бесконечно большая 110 - - малая 110, 149 - векторная 248 - возрастающая (убывающая) 111, 125, 221 - выпуклая вверх (вниз) 230, 231, 232 - дифференцируемая 159, 163, 185, 344, 348, 372, 477 - заданная параметрически 189 - интегрируемая 439, 512 - кусочно-непрерывная 463 - кусочно-непрерывно дифференцируемая 477 - логарифмическая 137 - многозначная (однозначная) 11 - непрерывная в точке 115, 119, 131, 162, 327, 330, 398, 468, 469 - - на множестве 121, 328, 332, 469 - непрерывно дифференцируемая 185, 348, 372 - неявная 94 - обратная 126, 130 - ограниченная 90, 145 - периодическая 14, 645 - показательная 134—136, 159 - равномерно непрерывная 334, 335, 336 - - стремящаяся к нулю 349 - рациональная 95, 131, 421 - сложная 94, 120, 330, 351, 353, 354 - степенная 138 - строго монотонная 125 - трансцендентная 96 - четная 14 - элементарная 332 Цепная линия 499 Циклоида 189 Числа действительные (вещественные) 15, 16, 20, 31, 78, 79, 80, 85 - иррациональные 15, 23, 86 - комплексные 15, 389, 394 - натуральные 12, 15, 43 - отрицательные 15 - рациональные 15, 23, 83 - целые 23 Число существенно комплексное 390 Шлемильха—Роша форма остаточного члена 213 Эволюта кривой 283 Эйлера подстановки 424 - постоянная 587 - формулы 644 Эквивалентность отображений отрезка 259 - функций 146, 152 Экстремум 222—229 Эллипс 501 Часть 2 Л.Д.Кудрявцев Курс математического анализа , т. 2 584 стр. М.: "Высшая школа", 1981 База топологии 567, 568 Базис пространства 423, 446 Бета-функция 322 Вихрь (ротор) 275, 278, 290 Вложение пространства 478 Вложения теоремы 435 Гельдера условие 365—366 Гомеоморфизм 52, 71, 257 Градиент вектора 274 - функции 245, 273 Дельта-функция (\delta-функция) 512, 523, 524 Дивергенция 275, 278, 285 Диффеоморфизм 68 Дифференциал отображения 62 Зависимость системы функций 85 Изоморфное отображение 425, 439, 454, 491 Интеграл Дарбу 149 - Дирихле 353, 393 - зависящий от параметра 158, 298, 303 - криволинейный 189, 192 - Лапласа 402 - несобственный 219, 303, 327 - поверхностный 264, 265, 266, 270, 272 - повторный 158 - Пуассона 222 - Римана 131 - Фурье 391 - Эйлера первого рода (гамма-функция) 322 - - второго рода (бета-функция) 322 Контур граничный 201 - ограничивающий поверхность 287 Координаты 447 - криволинейные 184 - сферические 187, 223 - цилиндрические 187 Коэффициенты Фурье 346, 389, 483, 484 Край поверхности 233 Кривая Пеано 129 Липшица условие 366 Лист Мёбиуса 259, 260 Матрица линейного оператора 56 - Якоби 35, 65, 86 Мера Жордана 114 Метод касательных (метод Ньютона) 547, 548, 550, 553 - хорд 548 Метрика (расстояние) 411, 440 Многочлен интерполяционный 553, 555 - Тейлора 9 - тригонометрический 373 Множество измеримое по Жордану 114 - квадрируемое 115 - кубируемое 115 - ограниченное 313, 437 - плотное в пространстве 415, 444, 468 Множители Лагранжа 96 Мультиндекс 11 Неравенство Бесселя 379, 485 - Коши-Буняковского 450 - - Шварца 448 - Минковского обобщенное 167 Норма 59, 426, 430, 431, 433 Носитель поверхности 237 - функции 349 Область односвязная 211, 294 Оператор 55, 519 - Лапласа 82, 218 - линейный 433, 436 - непрерывный 519, 520 - ограниченный 432, 433, 447 Ориентация границы 198, 202 - контура 198 - края поверхности 262 - поверхности 254, 261 Ортогональность 343, 471 Отображение 45 - дифференцируемое 61, 68 - линейное 55 - локально гомеоморфное 71 - непрерывное 45, 46, 52, 519—520 - обратное 52 - равномерно непрерывное 49 - регулярное 238 Отождествление 415, 416, 439, 454, 579 Плоскость касательная 242 Площадь (мера) поверхности 251 Поверхность 233, 236 - гладкая 246 - дифференцируемая 234, 239 - заданная неявно 240 - кусочно-гладкая 258, 263 - неориентируемая (односторонняя) 261 - ориентированная 255, 262 - ориентируемая (двусторонняя) 259, 261, 263 Подпространство 412, 422 - натянутое на векторы 103 Поле векторное 273 - - потенциальное 276, 294, 297 - - соленоидальное 291, 297 - скалярное 273 Полиномы Лежандра 473, 480, 490 Полунорма 426, 449 Пополнение пространства 419, 456, 467 Последовательность асимптотическая 335 - дельта-образная 516, 525 - сходящаяся 413, 436, 437, 516, 521, 530 - фундаментальная 411, 440 Последовательности эквивалентные 416 Потенциал 273, 342 Поток векторного поля через поверхность 277, 278, 297 Предел отображения по фильтру 574 - последовательности точек 413, 516 - фильтра 573, 575 Преобразование Фурье 398, 399, 401, 406, 410, 509, 533—542 Приближение наилучшее 484 Продолжение функции 13, 347 - функционала 519 Произведение полускалярное 447, 498 - скалярное 447 Производная отображения 62 Пространство банахово 481 - гильбертово 455, 496 - линейное 421 - метрическое 411 - нормированное 426 - обобщенных функции 524, 531 - полунормированное 426 - сопряженное 519 - со сходимостью 517 - топологическое 567 Равенство Парсеваля 380, 487, 488, 497, 498 Ряд асимптотический 335 Ряд Стирлинга 340 - Тейлора 19, 544 - тригонометрический 343, 346 - Фурье 346, 359, 360, 362, 365, 377, 381, 385—388, 484 Свертка функций 406, 407 Система замкнутая 490 - ортогональная 471 - полная 376, 444, 445, 478 Сумма Дарбу 141 - интегральная Римана 131, 195 - Фейера 368 - Фурье 352, 355 Точка особая 72, 345 - поверхности 233, 237 - - внутренняя 237 - - краевая 237 - - самопересечения 80, 233, 237 Узлы 553, 559 Фильтр 569, 570 Финитная функция 349, 350, 502 Формула Грина 199, 202, 203, 218 - квадратурная 556, 558 - обращения 398 - Остроградского—Гаусса 283, 284, 285 - прямоугольников 556 - Симпсона 558 - Сохоцкого 526 - Стирлинга 334 - Стокса 287, 289 - Тейлора 4, 5, 8, 11, 543, 545, 546 - трапеций 556, 557 Функции координатные 45, 54 Функционал 57, 515, 517 Функция абсолютно интегрируемая 328 - гармоническая 92 - интегрируемая 132, 219 - Лагранжа 96 - локально интегрируемая 522 - обобщенная 522, 525, 526, 527, 528, 529 - характеристическая 349 - Хевисайда 514, 528 Циркуляция 276, 278, 287 Числа Бернулли 340 Член остаточный интерполяции 555 - - формулы Тейлора 4, 7 Эквивалентности отношение 414, 459, 565 Экстремум 20, 93 Ядро Дирихле 353 - отображения 424 - Фейера 368 Якобиан (определитель Якоби) 35, 67 Часть 3 Л.Д.Кудрявцев Курс математического анализа, т. 3 352 стр. М.: "Высшая школа", 1989 Абсолютно интегрируемая функция 8 - сходящийся интеграл 8 Аксиомы расстояния 96 - Фреше 275 Алгебраическая сумма подмножеств линейных пространств 144 Арцела Ч. 134 База топологии пространства 331, 332 - фильтра 335 Базис пространства 140, 167 Банах С. 111, 163 Банахово пространство 163 Бесконечномерное линейное пространство 147 Бессель Ф. 51 Билинейное отображение 147, 148 Буняковский В.Я. 192 Вандермонд А.Т. 316 Вектор 139 Вес 322 Вложение пространств 227 Вольтерра В. 113 Вполне ограниченное множество метрического пространства 121 Гато Р. 183 Гёльдер О. Л. 36, 38 Гильберт Д. 98, 201 Гильбертов кирпич 123 Гильбертово пространство 97, 98, 201 Главное значение интеграла 79, 80 Гомеоморфизм 132 Грам И. 221 периодическая, абсолютно, интегрируемая, функция, 2\pi, 19 Действительное линейное пространство 137, 138 Дельта-последовательность 41, 284, 285 Дельта-функция 269, 282, 283 Диаметр подмножества 105 Дичи У. 24 Дирихле Л. 17 Дирак П. 269, 274 Дифференциал Гато 184 - отображения 180 - Фреше 180 Дифференцируемое в точке отображение 180 - - - по заданному направлению отображение 183 Единичная функция 287 Естественное вложение 215 - отображение 209 \varepsilon-окрестность 100 \varepsilon-сеть 121 Замкнутая ортогональная система 239 Изометричное соответствие 99 Изометричные пространства 99 Изоморфизм 146, 159, 179 Изоморфное отображение 146, 159, 179 Изоморфные линейные пространства 146, 159, 179, 200 Интеграл Дирихле 17 - Фурье 69 - - в комплексной форме 81 Интегральное уравнение Вольтерра 113, 114 Интегралы Лапласа 86 Интервал в линейном нормированном пространстве 183 Интерполяционный многочлен 316 - - Лагранжа 317 Квадратурная формула 318, 322 - - точная для многочленов данной степени 322 Класс эквивалентности 205, 206 Компакт в метрическом пространстве 120, 121 Комплексное линейное пространство 138 Конечное покрытие 127 Конечномерное линейное пространство 140 Константа вложения 227 Континуум 133 Коши О. 101, 105, 109, 192, 243, 341 Коэффициенты разложения элемента по данному базису 168 - Фурье 9, 231, 233 Критерий линейной независимости элементов 221 Кронекер Л. 140 Кусочно-непрерывная производная 55 Лагранж Ж.-Л. 317 Лежандр А.М. 143 Лаплас П. 86 Лебег А. 23, 154 Лейбниц Г. 31 Лемма Л.Шварца 185, 186 Линейная комбинация элементов пространства 139 - оболочка множества 140 Линейно зависимая система векторов 139 - независимая система векторов 139 Линейное отображение 145 - пространство 192 - - с почти скалярным произведением 192 - - со скалярным произведением 192 - - - сходимостью 275 Линейность дифференциала 182 - квадратурной формулы 322 - преобразования Фурье 83 Линейный оператор 145 - функционал 255, 276 Липшиц Р. 37 Локальная база топологии пространства 332 Локально интегрируемая функция 281 Метод "вилки" 309 - касательных (метод Ньютона) 312, 315 - хорд 310, 312 Метрика 96 - порожденная заданной нормой пространства 161 Метрическое пространство 96 Минимальное свойство коэффициентов Фурье 232 Многочлены Лежандра 143 - Чебышева 143, 144 Мультилинейное отображение 148 Наилучшее приближение элемента с помощью линейных комбинаций 233 Направление 334 Натуральный фильтр 333 Неподвижная точка отображения 111 Непрерывное отображение в точке 107, 108, 111 - - пространства в пространство 108, 158, 159, 278, 279 Непрерывный функционал 276 Неравенство Бесселя 51, 234 - Коши-Буняковского 192, 194 - Коши-Шварца 243 - треугольника 149, 192 n-мерное пространство 140 n-мерный вектор 140 Норма 149 - билинейного отображения 176 - порожденная скалярным произведением 193 Нормированное линейное пространство 149 Носитель функции 12 Нулевой функционал 277 - элемент 138 Ньютон И. 312 Обобщенная функция 281 - - медленного роста 291 Образ фильтра 337 Обратное преобразование Фурье 82 Обращение в нуль обобщенной функции на интервале 285 Ограниченное билинейное отображение 176 - множество 105, 158 - по полунорме (по норме) множество 158 Ограниченный оператор 171 Окрестность точки топологического пространства 331 Определитель Вандермонда 316 - Грама 221 Ортогонализация 225 Ортогональная проекция элемента в подпространство 251 - система элементов 6, 220 Ортогональное дополнение множества 250 Ортогональные элементы 220 Ортонормированная система элементов 220 Остаточный член интерполяции 317 Открытое подмножество топологического пространства 331 Отношение эквивалентности 205, 329 Отрезок в линейном нормированном пространстве 183 Парсеваль М. 52, 236 Периодическое продолжение функции 10 Пикир Ш.Э. 111 Планшерелъ М. 265 Плотное множество в пространстве 116, 165 Подпространство 98, 139, 249 Подфильтр 334 Покрытие множества 127 Полная система функций в смысле равномерного приближения 47 - - - - - среднего квадратичного приближения 48 - - элементов пространства 165, 166, 226, 227, 237 Полное линейное нормированное пространство 163 - метрическое пространство 102 Полный фильтр 335 Положительная определенность скалярного произведения 191 - полуопределенность почти скалярного произведения 191 Полунорма 148, 149 - порожденная почти скалярным произведением 193 Полунормированное линейное пространство 148, 149 Пополнение пространства 116, 120, 164, 202, 285 Последовательность Коши 101, 105, 106 Постоянная обобщенная функция 282 Почти скалярное произведение 191, 192 Правильное разбиение 8 Предгильбертово пространство 201 Предел отображения 107 - - по направлению 339 - - - фильтру 338, 340 - последовательности точек метрического пространства 100 - фильтра 337 Предкомпактное множество 134 Преобразование Фурье 81, 82, 266 - - обобщенной функции 297 Признак Дини 24, 26 Принцип неподвижной точки Пикара-Банаха 111, 113 - локализации 21 - сжимающих отображений 111, 113 Продолжение функционала 278 Произведение линейных пространств 147, 174 - фильтров 336 - элемента линейного пространства на число 138 Производная Гато 183 - n-го порядка 187, 188 - обобщенной функции 286 - по направлению 183 - Фреше 182 Простая гармоника 27 Пространство обобщенных функций 283 - - - медленного роста 291 - основных функций D 280 - - - S 289, 290 - со сходимостью см, также, указатель, основных, обозначений, 275 Противоположные элементы 138 Прямая сумма подпространств 145 Равенство обобщенных функций 285 - Парсеваля 52 - Парсеваля-Стеклова 236 Равномерно непрерывное отображение 108 - ограниченное семейство функций 134 - сходящаяся последовательность отображений 109 Равностепенно непрерывное семейство функций 134 Разложение логарифма в степенной ряд в комплексной области 65, 66 - элемента пространства по базису 167 Разность элементов линейного пространства 138 Расстояние 96 - порожденное заданным скалярным произведением 193 Регулярная точка 23 Риман Б. 11, 154 Ряд в линейном нормированном пространстве 166 - Лейбница 31 - обобщенных функций 289 - Фурье 9, 62, 233 - - в комплексной форме 64 - - для нечетной функции 28, 63 - - - четной функции 27, 28, 63 Свертка функций 90 Связное метрическое пространство 133 Сепарабельное пространство 127, 166 Сжимающее отображение 111 Сильный дифференциал 184 Символ Кронекера 140, 141 Симметричная билинейная форма 188 Симпсон Т. 319 Скалярное произведение 191, 192 Слабая производная 184 Слабый дифференциал 184 Соболев С.Л. 274 Сопряженное пространство 256, 278 Сохоцкий Ю.В. 285 Среднее квадратичное отклонение 48 Стеклов В.А. 236 Ступенчатая функция 259 Сумма ряда 65, 167, 198 - Фейера 39 - Фурье 9, 16 - элементов линейного пространства 138 Сходящаяся по полунорме (по норме) последовательность элементов пространства 156 - последовательность отображений 108 - - точек метрического пространства 99 - - функционалов 277 - - функций 280, 290 Сходимость в смысле p-среднего 157 - - - среднего квадратичного 157 Сходящийся интеграл 8 - ряд 65, 166, 198, 289 Счетное покрытие 127 Теорема Арцела 134, 137 - о замкнутых и полных системах 239, 240 - - композиции непрерывных отображений метрических пространств 110 - - конечных приращениях отображений линейных нормированных пространств 186, 187 - - линейных функционалах гильбертовых пространств 256, 258 - - неподвижной точке сжимающих отображении 111, 113 - - пополнении линейного нормированного пространства 164, 165 - - - - пространства со скалярным произведением 201, 202 - - - метрического пространства 116, 120 - - - пространства CL_ 2, 216, 217 - - порядке приближения интегралов с помощью квадратурных формул 324, 326 - - последовательности Коши подмножеств полного метрического пространства 106, 107 - - почленном дифференцировании тригонометрического ряда Фурье 54 - - - интегрировании тригонометрического ряда Фурье 58, 60 - - пределе отображения по фильтру 341, 343 - - - фильтра 338 - - представлении функции интегралом Фурье 75, 78 - - преобразовании Фурье в пространстве S 293, 295 - - - - - - S' 299 - - разложении множества на подмножества, состоящие из эквивалентных элементов 329, 330 - - - пространства в прямую сумму его ортогональных подпространств 254, 255 - - существовании ортонормированных базисов 240 - - сходимости тригонометрического ряда Фурье в данной точке 37, 38 - об изоморфизме гильбертовых пространств 240, 242, 243 - - ортогонализации 224, 225 - - эквивалентности нормированных конечномерных линейных пространств 151, 153 - Римана о коэффициентах ряда Фурье абсолютно интегрируемой функции 11, 15, 16 - Фейера 42, 44 Теоремы Вейерштрасса о приближении непрерывных функций тригонометрическими и алгебраическими многочленами 45, 46, 48 - о единственности рядов Фурье 238, 248 - - компактах в метрическом пространстве 126, 127, 131, 133 - - линейных ограниченных операторах 172, 175 - - минимальном свойстве коэффициентов Фурье 50, 52, 230, 232 - - непрерывных отображениях метрических пространств 132, 133 - - полноте тригонометрических и алгебраических многочленов в пространствах непрерывных функций 48, 50 - - преобразованиях Фурье абсолютно интегрируемых функций 86, 89, 93, 94 - - производных отображений в линейных нормированных пространствах 182, 183 - - равномерно сходящихся тригонометрических рядах Фурье 7, 8, 56, 58, 249 - - сходимости рядов Фурье 52, 53, 235, 238, 245 - об ограниченных билинейных отображениях 176, 177, 179, 180 - - ортогональных проекциях 251, 254 - Планшереля 265, 268 Топология пространства 331 Точка пространства 96, 139 T-периодическая функция 9, 10 Треугольная матрица 142 Тригонометрическая система функций 6 Тригонометрический многочлен 44 - ряд 6 - - Фурье 9 Узел 322 - интерполяции 316 Упорядоченное множество 334 Условие Гёльдера 36 - Липшица 37 Фейер Л. 39, 41 РАЗДЕЛ 5. Практикум по решению задач 1. Данные числа z1 и z 2 представить в тригонометрической и показательной формах и 2 z выполнить указанные действия: z1 3 i; z2 2 2i; a) z1 z2 ; b) 1 . z2 2. Найти все значения a ) 3 27 27i ; b) 4 16i и изобразить их на комплексной плоскости. 1 2 2 3. Найти образ a ) x y 2 x 1 0; b) y x 1 при отображении w . z 1 1 4. Вычислить: a) Arccos ; b) Arctg(1). 2 5. Проверить выполнение условий Коши-Римана (Даламбера-Эйлера) и найти f ( z ) : a) z 6 5 z 2 ; b) sin 2 z cos3 z. 6. Проверить, что функция ( x; y ) гармоническая, и построить соответствующую ей аналитическую функцию: a ) ( x; y ) x 6 15 x 4 y 2 15 x 2 y 4 y 6 3x 2; b) ( x; y ) e 2 y cos 2 x. 7. Определить радиус сходимости и круг сходимости степенного ряда: n0 a) n 2n 3n z 2 i ; b) n0 1 1 z 3 . n n n 8. Вычислить интеграл: z 3dz по отрезку прямой, соединяющей точки z 1 i и a) z 2 6i; C 2 2 z z dz по дуге параболы b) y x 2 от точки z 1 i до точки z 2 4i. C 9. Разложить функцию f в ряд Лорана и указать область, в которой это разложение имеет место: 2z 3 в окрестности точек z i, z 2, z ; ( z i)( z 2) z 1 в окрестности точек z 2i, z 1, z . b) f ( z ) ( z 2i)( z 1) a) f ( z ) 10. Найти изолированные особые точки аналитической функции и выяснить их характер: a) 1 tgz z 1 1 z , ; b) 3 , . z 9 z z z ez 2 11. Определить нули функции и указать их кратность: a) ez 1 z 2 ; b) z ( z 3)sin z 2 . 12. Вычислить интегралы: a) dz 3 z z 2 4; |z i| 2 dz . 2 ( z 3)( z 1) |z 1|1 b) РАЗДЕЛ 6. Изменения в рабочей программе, которые произошли после утверждения программы Характер изменений в программе Номер и дата протокола заседания кафедры, на котором было принято данное решение Подпись заведующего кафедрой, утверждающего внесённое изменение Подпись декана факультета, утверждающего данное изменение РАЗДЕЛ 7. Учебные занятия по дисциплине ведут: Ф.И.О. учёное звание и степень преподавателя Локоть Вадим Владимирович – кандидат физико-математических наук, доцент Туканова Лариса Егоровна Учебный год 2007/08 Факультет Специальность Физико050201.00 − «маматематический тематика – с дополнительной специальностью»